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We have developed a numerical package to simulate particle motions in fluid
interfaces. The particles are moved in a direct simulation respecting the fundamental
equations of motion of fluids and solid particles without the use of models. The
fluid–particle motion is resolved by the method of distributed Lagrange multipliers
and the interface is moved by the method of level sets. The present work fills a gap
since there are no other theoretical methods available to describe the nonlinear fluid
dynamics of capillary attraction.

Two different cases of constrained motions of floating particles are studied here.
In the first case, we study motions of floating spheres under the constraint that the
contact angle is fixed by the Young–Dupré law; the contact line must move when the
contact angle is fixed. In the second case, we study motions of disks (short cylinders)
with flat ends in which the contact line is pinned at the sharp edge of the disk; the
contact angle must change when the disks move and this angle can change within
the limits specified by the Gibbs extension to the Young–Dupré law. The fact that
sharp edged particles cling to interfaces independent of particle wettability is not fully
appreciated and needs study.

The numerical scheme presented here is at present the only one which can move
floating particles in direct simulation. We simulate the evolution of single heavier-
than-liquid spheres and disks to their equilibrium depth and the evolution to clusters
of two and fours spheres and two disks under lateral forces, collectively called capillary
attraction. New experiments by Wang, Bai & Joseph on the equilibrium depth of
floating disks pinned at the edge are presented and compared with analysis and
simulations.

1. Introduction
In the work which follows, we will be considering the motions of particles which

float in the interface between two fluids. We shall sometimes describe the wettabi-
lity properties of the particles as hydrophobic or hydrophilic. The mathematical
description of our problem in terms of air and water is only a convention for the
general problem of motion of particles in the interfaces between any two fluids.

It is well known that small tea leaves floating on the tea surface collect near the cup
wall due to the formation of a meniscus that rises near the wall and results in a net
capillary force towards the wall. The meniscus rises near the wall because the water
wets the cup. If, on the other hand, the liquid does not wet the cup, i.e. the meniscus
falls near the cup wall, small floating particles tend to move away from the wall and
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Figure 1. (From WBJ 2005) Capillary attraction of floating particles. (a) Neutrally buoyant
copolymer particles of nominal diameter 0.1 cm cluster in a water/air interface. (b) Heavy
aluminum disks (short cylinders with circular cross-sections) hanging in a water/air interface
at the sharp rim. The distributions of 14 particles at 0 s (left), after 60 s (middle) and after
200 s (right) are shown. The diameter of the disks is 0.3175 cm and their height is 0.15875 cm.
(c) Heavy aluminum bricks with square cross-sections hanging in a water/air interface at the
sharp corners. The distributions of 14 particles at 0 s (left), after 142 s (middle) and after 220 s
(right) are shown. The dimension of the bricks is 0.3175 cm × 0.3175 cm × 0.15875 cm. The
attractive power of capillarity on floating particles is very long range and the accelerations in
the final stage of clustering are exceedingly large. Movies of these experiments can be viewed
at http://www.aem.umn.edu/research/particles/floating/.

toward the centre of the cup. Similarly, the deformation of liquid–liquid interfaces
due to floating light particles, or due to trapped heavy particles, gives rise to capillary
forces on the particles which cause them to cluster, as can be seen in figure 1. The
clustering of particles on interfaces is important because it modifies the interfacial
properties of the two-phase system and is used in many flotation-based extraction
and separation processes (Gerson, Zaijc & Ouchi 1979). More recently, this effect has
been used for the self-assembly of submicron sized particles on two-liquid interfaces
(see Bowden et al. 1997, 1999; Grzybowski et al. 2001, and references therein).
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(a)
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Figure 2. Spherical particles in water. (a) Heavier-than-water hydrophobic spheres. The
meniscus between the spheres is below the undisturbed level. Assuming that the contact
angle remains fixed, the horizontal component of capillary force moves them toward each
other. (b) Lighter-than-water hydrophilic spheres will rise into the elevated section of the
meniscus and come together.

The motion of tea leaves towards or away from the wall, in the above example, is
entirely due to the deformation of the meniscus near the cup wall. The clustering of
particles, on the other hand, is a consequence of the interface deformation caused by
neighbouring particles. Specifically, when two heavy hydrophobic spheres are close to
each other the deformed interface around the spheres is not symmetric because the
interface height between the spheres is lowered by the capillary force; on the other
hand, lighter-than-water hydrophilic spheres will rise as shown in figure 2. In both of
these cases, the lateral component of interfacial tension is attractive and the spheres
tend to cluster. But, when one sphere is hydrophilic and the other is hydrophobic, the
lateral force at short range is repulsive and tight clusters cannot form.

The literature on capillary attraction is cited by Kralchevsky & Nagayama (2000)
and Saif (2002), here in § 3, and in the paper on capillary attraction of particles
embedded in a thin film rimming the inside of a rotating cylinder by Joseph et al.
(2003). These works do not treat the case of capillary attraction of particles pinned
to the interface at a sharp edge which is one of the main subjects in this paper.

Problems of evolution to equilibrium of heavier-than-liquid floating particles may
be studied by direct numerical simulation (DNS); this simulation method fills a gap
identified by Gifford & Scriven (1971) who noted that

“casual observations . . . show that floating needles and many other sorts of particles do indeed

come together with astonishing acceleration. The unsteady flow fields that are generated challenge

analysis by both experiment and theory. They will have to be understood before the common-

place ‘capillary attraction’ can be more than a mere label, so far as dynamic processes are

concerned.”

The basic facts about the equilibrium of single particles are discussed in § 2 and new
experiments on the equilibrium depth of disks pinned at their edges are presented.
The literature on capillary attraction is briefly reviewed in § 3. In § 4 we set out
the equations which govern the motions of floating particles and introduce the
basic dimensionless groups which characterize these motions. In § 5, we outline the
numerical method stressing only those details which are new. Readers interested in
constructing or improving the numerical algorithm used in this study can find a
detailed description in the Appendix. In § 6.1, we compute the solutions of the initial
value problems, starting from rest, for one, two and four spheres with contact angle
prescribed. In § 6.1, we compute the solutions of the initial value problems, starting
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Figure 3. The vertical component of capillary force for the disk does not change when the
contact line moves from AB to CD, for two different floating heights, because the contact
angle α is fixed. For a sphere, the vertical component of the capillary force changes as the
contact line moves on its surface.

from rest, for one and two disks pinned at their sharp edges. The solutions are
compared with experimental data.

2. Floating particles which should sink
In this section we consider the forces that determine the equilibrium depth of a

floating particle. Princen (1969) gave an excellent analysis of this problem for a sphere
and prismatic particles with sharp edges. Keller (1998) generalized this analysis for
smooth bodies of arbitrary shape. Katoh, Fujita & Imazu (1992) used the floating
ball to measure contact angles.

Floating particles which should sink are held up by capillary forces at the line of
contact of the three phases on the particle surface. The hanging depth between the
contact line and the highest point on the meniscus depends on whether the meniscus
attaches to the particle on the smooth surface with uniquely determined normal or
at a corner or edge where the normal is undefined. Here we show that the hanging
depth is determined by the position of the contact line on a floating sphere when the
contact angle is fixed by the Young–Dupré law, and by the value of the contact angle
which changes with the weight of the particle when the contact line is pinned at a
sharp edge.

2.1. Floating particles with sharp edges

It is well known, but not well understood, that liquid–air–solid interfaces tend to
locate at sharp edges. This mechanism allows a prismatic disk or cube to float with
contact line pinned to its sharp rim. Even when a downward vertical force is applied
by adding weights onto the top surface of a floating disk, as discussed below, the
contact line remains pinned to the rim.

Obviously, a prismatic particle which is denser than the liquid below can float
only if the vertical component of interfacial tension is sufficiently large to balance its
buoyant weight and will sink when this is no longer true. The effects of the buoyant
weight may be isolated in the case of a circular cylinder or disk, with axis vertical,
which is suspended with the contact line on a circle perpendicular to the cylinder
generator (see figure 3). The contact angle is fixed by the Young–Dupré law and does
not change even as the contact line sinks due to change in the cylinder buoyant weight.
The cylinder can be denser than the liquid provided that the vertical capillary force is
just large enough to balance its buoyant weight. If the cylinder’s weight is increased, it
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Figure 4. Effect of changing the buoyant weight on the contact angle at the rim of a cylinder.
The contact angle is the same for a sphere (a) and disk (b) when the buoyant weights are the
same. Increasing the buoyant weight leads to larger contact angles which have larger vertical
components of the capillary force as shown in (b), (c) and (d). In the experiments of WBJ
(2005) the cylinder would sink when ψ � 90◦; however theoretically the cylinder can float with
ψ > 90◦ (Hesla & Joseph 2003).

will sink further and the contact line on the smooth surface will move upwards. But,
the vertical component of capillary force will not change because the angle between
the interface and the horizontal, which only depends on the contact angle, does not
change when the cylinder sinks (see figure 3). Consequently, the maximum interfacial
deformation, the vertical distance between the contact line and the highest point on
the meniscus, will also not change as the cylinder sinks. The buoyancy force acting on
the disk, however, increases, as it sinks into the liquid below. Disks of different weight
in air, with same contact angle and buoyant weight can be suspended as in figure 3.

At a critical value of the disk weight, the contact line moves from the smooth
surface to the sharp edge. If the disk weight is increased further, the contact line
remains pinned at the sharp corner for a range of weights, even though the disk
continues to sink further (see figures 4–7). A heavier-than-liquid disk can float with
the interface pinned to the sharp edge, as in figure 4, provided the vertical component
of the capillary force is large enough to balance its buoyant weight. In this paper, we
will study the dynamics of floating disks in this state.

2.2. Gibbs inequality

This pinning of the contact line at the disk edge appears to be in conflict with the
Young–Dupré law which states that the equilibrium contact angle between a liquid,
a gas and a solid wall is constant

γLG cos α = γSG − γSL,

where α is the contact angle and γLG, γSG and γSL are the interfacial energy between
liquid and gas, solid and gas, and solid and liquid, respectively. To ensure that the
equilibrium contact angle is fixed, when the interface at a small distance away from
the contact line moves the contact line must also move. But, since the normal at the
corner is not defined, the Young–Dupré law is not violated provided the contact angle
α at the corner, as shown in figure 8, stays within the range specified by the Gibbs
extension to the Young–Dupré law:

α0 < α < 180 − φ + α0

where φ is the wedge angle and α0 is the equilibrium contact angle for the vertical
face (see Gibbs 1906 and Princen 1969).
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(a) (b)

Figure 5. (From WBJ 2005). Two photos of floating Teflon disks of density ρs = 1.4 g cm−3

held at the contact line in water of density ρf = 1 g cm−3. Both disks have a diameter of 0.8 cm;
the height from the bottom of the disk to the contact line is 0.4 cm in (a) and 0.8 cm in (b).
The contact angle in (b) is larger than that in (a) in order to satisfy the force balance. The
image of the disk projecting above the contact line is a reflection in the surface of the water.

(a) (b)

(c)

Figure 6. (From WBJ 2005). (a) The meniscus for a Teflon cylinder of density ρs = 1.4 g cm−3

hanging from a flat edge in water. (b) An aluminum plate can float in water hanging from
the sharp edge; when weighted by a Teflon ball, the plate still floats but the hanging depth
increases. (c) A floating glass plate is held at the sharp edge in water. Spheres of aluminum
and glass will sink in water, provided that the spheres are not so small that the surface tension
will dominate the buoyant weight. The contact angle on the hydrophilic glass plate and the
hydrophobic Teflon plate is determined by their buoyant weight and not by wettability.

2.3. Vertical force balance in equilibrium

An analysis of the forces which keep a sphere suspended in the interface between
fluids was given first by Princen (1969), then by Rapacchietta & Neumann (1977),
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(a) (b)

Figure 7. (From WBJ 2005). (a) A cartoon for the experiment determining the critical contact
angle at the sharp edge. See § 2.5 for details of the experiment. (b) A photo from the video
showing that the contact angle reaches 90◦ at a moment just before the disk sinks. The square,
solid black part in the photo is the disk and the bright part is water.

α

φ

180 – φ + α0

α0

Figure 8. Two limiting angles for the Gibbs extension to the Young–Dupré law which states
that the contact angle α at the sharp edge can take any value between α0 and 180 − φ + α0.

and Katoh et al. (1992), who used the floating ball to measure contact angles. A
detailed discussion of the vertical balance of a ball in equilibrium can be found in
Joseph et al. (2003). An analysis of the forces which keep a heavy disk suspended in
the interface at the sharp upper rim of the disk was given by Hesla & Joseph (2003),
following an earlier analysis of Princen (1969) for a prismatic particle.

For equilibrium, the buoyant weight of the particle must be equal to the vertical
component of the capillary force. If the particle density is larger than that of both
fluids, equilibrium is possible only when the particle is hydrophobic and the vertical
component of capillary force is large enough to balance its buoyant weight. The inter-
face shape in this case is concave down and the net capillary force acts against gravity.

2.3.1. Force balance for a sphere

The conditions for equilibrium of a floating sphere can be framed with the help of
the sketch in figure 9. The vertical component of capillary force Fc depends on the
particle radius R, the surface tension coefficient γ , the filling angle θc and the contact
angle α, and is given by

Fc = 2π(R sin θc)γ sin[θc − (π − α)] = −2π(R sin θc)γ sin(θc + α). (2.1)

The above expression holds for both the hydrophobic and hydrophilic cases.
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Figure 9. (From Joseph et al. 2003). Hydrophobic and hydrophilic particles in equilibrium.
The position of the contact ring determines the angle θc . The point of extension of the flat
meniscus on the sphere determines the angle θ1. h2 = R(cos θc − cos θ1).

The weight M g of a heavy particle in equilibrium is balanced by a capillary force
Fc and net pressure force Fp satisfying:

Fc + Fp = M g, (2.2)

where Fc is given by (2.1). Fp is the pressure force given by

Fp =

∫ θc

0

p cos θ(2πR sin θ)R dθ

= ρLgπR3

(
2

3
− cos θc +

1

3
cos3 θc

)
+ ρagπR3

(
2

3
+ cos θc − 1

3
cos3 θc

)
− (ρL − ρa)gh2πR2 sin2 θc (2.3)

where h2 is the meniscus height, and ρL is the density of the lower liquid and ρa is
the air density. Substituting into (2.2) we obtain

2πγ (R sin θc) sin(θc + α) − ρLgπR3

(
2

3
− cos θc +

1

3
cos3 θc

)

− ρagπR3

(
2

3
+ cos θc − 1

3
cos3 θc

)
+ (ρL − ρa)gh2πR2 sin2 θc = Mg (2.4)
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Figure 10. Heavier-than-liquid disk hanging from a flat edge. The capillary force is given by
Fc = 2πγ sin ψ , where γ is the interfacial tension. The meniscus is z =h(r); h(∞) = h2 is the
highest value of z on the meniscus. Pa is air pressure and P0 is the pressure at the bottom of
the disk z = −h. The disk may be weighted by heavy balls in the cone-shaped cavity, increasing
h2 and ψ without sinking.

with M = 4
3
πR3gρp . Equation (2.4) may be expressed in a dimensionless form as

sin θc sin(θc + α) = −1

2
B

[
4

3
l1 −

(
2

3
− cos θc +

1

3
cos3 θc

)

− l2

(
2

3
+ cos θc − 1

3
cos3 θc

)
+ (1 − l2)(cos θ1 − cos θc) sin2 θc

]
(2.5)

where B = ρLR2g/γ is the Bond number and l1 = ρp/ρL and l2 = ρa/ρL are the density
ratios.

The capillary force acts against gravity only when θc + α − π is positive, in which
case sin(θc + α) < 0, otherwise it acts in the same direction as gravity. For example, if
α = 3π/4, a heavy sphere will float with θc > π/4. For α = 3π/4 and θc = π/4, the force
Fc is zero and there is no interface deformation. Fc increases when θc is increased
from π/4, reaches its maximum value at θc ≈ 1.9 and then decreases with increasing
θc. On the other hand, when the contact angle is π, Fc is always non-negative and its
maximum value is for θc = π/2, i.e. the sphere half immersed in the lower liquid. The
buoyant weight of the particle also changes with θc.

2.3.2. Force balance for a disk

The force balance for the disk is given by (2.2). From figure 10 it is clear that

Fc = 2πRγ sin ψ, (2.6)

Fp = (P0 − Pa)πR2 = ρLg(h + h2)πR2. (2.7)

Substituting into (2.2), we obtain

2πRγ sin ψ + ρLgV + πR2h2ρLg = Mg, (2.8)

where V = πR2h is the volume of the disk. The angle ψ =α − 90, where α is the
contact angle, is measured from the horizontal. The dimensionless form of (2.8) is
given by

sin ψ = B
1

2

[
(l1 − 1)

h

R
− h2

R

]
. (2.9)

The meniscus height h2 is determined from the solution of the meniscus equation

ρgh[h(r) − h2] =
γ

r

[
rh′(r)√
1 + h′(r)2

]′

, (2.10)

where the prime refers to the derivative with respect to r; the origin (z, r) = (0, 0) is
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Figure 11. The deformation of the interface due to sufficiently small floating spheres or disks is
negligible. A small hydrophobic sphere will float with θc ≈ π−α so that interfacial deformation
is negligible even if it is denser than the liquid below. A small less dense hydrophilic sphere
also does not deform the interface. Similarly, a small dense hydrophobic disk floats on the
surface with negligible penetration into the liquid. A small hydrophilic disk which is lighter
than the lower liquid does not deform the interface and it is kept inside the lower liquid by
the capillary force which acts downwards.

in the plane at the centre of the circle of radius R defined by the contact line. The
integration starts at (z, r) = (0, R) where

h′(r) = tan ψ. (2.11)

Far from the particle, the meniscus is flat and

lim
r→∞

{rh′(r), h(r)} = {0, h2}. (2.12)

For a cylinder, the values of ψ and h2 can be determined from the solution z = h(r),
using (2.8) together with

ρg

∫ ∞

R

[h2 − h(r)]r dr = γR sin ψ (2.13)

which follows from (2.9), (2.11) and (2.12).
Hesla & Joseph (2003) worked out an exact numerical solution of the problem

just considered; they gave a simple mathematical argument that as the weight of
a hydrophobic floating disk is gradually increased (figure 4), the maximum contact
angle at the sharp rim which is attained before the disk sinks is greater than 90◦. They
presented numerical results which support this conclusion. Though such solutions are
allowed by the equilibrium analysis, they have not been observed. It may be that
configurations with contact angle greater than 90◦ are unstable (see figure 7).

2.4. Small particles, large particles and heavy particles

The left-hand side of equation (2.5), and thus also the right-hand side, lies in the
range −1 � sin θc sin(θc + α) � 1. Obviously, (2.5) cannot be solved if B is too large
which may be the case when the sphere is too heavy or too large. Similarly, for a
floating disk if B is too large, (2.9) cannot be solved; the disk will sink when the
capillary force is not large enough to balance its buoyant weight.

As R approaches zero, the capillary force, which varies linearly with R, dominates
the buoyant weight of the sphere which varies with R3. In this limit since the Bond
number B = ρLR2g/γ → 0, the right-hand side of (2.5) is zero and thus sin(α + θc) ≈ 0
or θc ≈ π − α (see figure 11). We may therefore conclude that heavy small particles
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m (g) 3.38 3.63 3.88 4.13 4.38
ψ(deg.) 28.4 37.8 43.0 51.7 71.1
H2 (cm) 0.130 0.176 0.206 0.255 0.302
2πRγ sinψ/mg (%) 5.27 6.31 6.58 7.11 8.08
ρ1gh2πR2/mg (%) 19.44 24.54 26.94 31.34 34.98
|e|/mg (%) 1.03 0.01 1.8 0.77 0.36

Table 1. Quantities entering into the force balance equation (2.8). The residual e is computed
from (2.14). The values of e are small. Taken from WBJ (2005).

can be suspended without causing significant interfacial deformation when B is small.
Krahshesky et al. (1992, 1993) noted that for particles floating on water this limit
is approximately reached when their diameter is 10 µm. Hence, the lateral capillary
forces, which arise from interfacial deformation, are also insignificant when the particle
diameter is smaller than 10 µm. Similarly, if volume of the disk approaches zero, the
capillary force, which varies linearly with R, will dominate its buoyant weight which
varies as hR2. In this limit, the right-hand side of (2.8) is zero and sin ψ ≈ 0 or ψ = 0.
The disk therefore does not deform the interface, and floats with its top surface in
the plane of the interface (see figure 11).

The vertical component of the capillary force for the two positions in figure 3 can
be zero only if the contact angle α is 90◦. This implies that a small hydrophobic
(α > 90◦) disk must float on its bottom edge, as shown in figure 10; it cannot be
suspended as in figure 3. When the contact line is pinned to an edge the contact angle
can take any value between the two values specified by the Gibbs inequality. The
argument just given applies to all cases in which the Bond number is small, to particles
with other shapes, like cubes and to lighter and larger particles.

When particles are partially immersed in a thin liquid film and their weight is
supported by the substrate below, the arguments just given are not applicable and
the interface deformation can be significant even for small particles. Kralchevsky &
Nagayama (2000) have shown that in thin films the particle–particle attraction force
increases with decreasing particle size.

2.5. Experiments on floating disks pinned to the interface at the sharp edge

Wang, Bai & Joseph (2005, referred to herein as WBJ) used a 3.38 g Teflon cylinder
with a cone cut in the centre; 0.25 g steel beads were put in the cone to change
the weight (see figure 10). The radius, height and volume of the disk are [1.27 cm,
0.495 cm, 2.51 cm3]. The angle ψ and the depression h2 were measured using a video
camera. Measurements were taken at several azimuthal positions and the average
values of ψ and h2 recorded. After inserting the measured parameters into the force
balance equation (2.8), the difference between the measured vertical force and the
particle weight, the residual e, was computed:

e = Mg − 2πRγ sin ψ − ρLgπR2(h + h2). (2.14)

Table 1 shows that the contact angle at the rim increases when the weight of the
particle is increased. A maximum weight can be held in this manner; beyond this
weight the particle will sink. WBJ did experiments to determine the critical contact
angle corresponding to this maximum weight. The 3.38 g Teflon disk with a cone
cut in the centre was used. The contact angle was gradually increased by pushing
the disk down into the water with a needle (see figure 7). A video camera was used
to record the whole process and the critical contact angle was determined using the
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video replay. The contact angle increased up to 90◦ while the contact line was pinned
at the rim (see figure 4); when the needle was pushed further down, the contact
line moved away from the sharp edge to the flat top of the disk, and the disk sank
instantaneously. They concluded that the critical contact angle corresponding to the
maximum weight which could be held at the sharp edge is 90◦. Hesla & Joseph (2003)
have shown that the equilibrium solution for this problem allows contact angles
larger than 90◦; the vertical component of the capillary force decreases while the
buoyant force increases, maintaining the balance. These larger contact angles may be
unstable.

3. Motion due to the capillarity of floating particles on liquid surfaces
The deformation of a fluid–fluid interface due to floating or trapped particles gives

rise to lateral capillary forces. A simple explanation is given in figure 3. A heavier-
than-liquid particle will fall down a downward sloping meniscus while an upwardly
buoyant particle will rise.

There are several ways to isolate the effects of capillarity from influence by gravity
(see Joseph et al. 2003). Poynting & Thompson (1913) investigated the capillary effect
by considering two vertical plates immersed in a liquid; the space between the plates
is a two-dimensional capillary tube. If the plates are hydrophobic, the level in the
capillary gap sinks below the liquid outside; if the plates are hydrophilic the levels
will rise. Another way to take away the effects of gravity is to support the particles
on a substrate. In this case, the horizontal forces are due to capillary effects alone.
Katoh et al. (1992) studied the motion of a particle floating on a liquid meniscus
surface which could be interpreted as motion on a substrate because the foaming
phlystyrol particles used by them are an order of magnitude lighter than water, and
thus minimize the effects of gravity compared to capillarity. Their experimental results
are completely consistent with the predictions of Poynting & Thompson: when the
sphere and the wall are alike with respect to wetting, say both are hydrophobic or
hydrophilic, the wall and sphere attract; when they are unlike the sphere and wall
repel.

There are only a few theoretical studies of capillary attraction. Nicolson (1949) was
the first to derive an analytical expression for the capillary force between two floating
bubbles by using the superposition approximation to solve the Laplace equation
of capillarity. A similar approximate method was applied by Chan, Henry & White
(1981) to floating spheres and horizontal cylinders. For horizontal cylinders alternative
approaches were proposed by Gifford & Scriven (1971) and by Fortes (1982). The
theoretical works are based on solutions of the Laplace equations for capillary menisci
with translational or rotational symmetry, where the Laplace equation reduces to an
ordinary differential equation. Saif (2002) developed an interesting analysis of the
capillary interaction of long plates with round ends at prescribed heights which do
not float.

For the case where the meniscus slope and the particle size are small, the Laplace
equation for the interface shape was solved using bipolar coordinates by Krahshesky
et al. (1992, 1993). This solution provides expressions for calculating the capillary
meniscus force between two vertical disks, between two spheres partially immersed in
a liquid layer and between a vertical disk and a sphere. Specifically, Kralchevsky &
Nagayama (2000) have shown that the lateral force F1 acting on particles of radii R1

and R2 separated by distance L is equal in magnitude and opposite in sign and is
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given by

F1 = −2πQ1Q2qK1(qL)
[
1 + O

(
q2R2

k

)]
when L � rk. (3.1)

Here rk = Rk sin(θc), k = 1, 2 are the radii of the two contact lines as shown in
figure 9 (where the particle radius is assumed to be R), Qk = rk sin ψk , where ψk is the
interface slope with the horizontal plane at the point of contact, q =

√
(ρ1 − ρp)g/γ

is the inverse of the capillary length, and K1(x) is the modified Bessel function of the
first order. Equation (3.1) is valid for particles much smaller than the capillary length.
The force acting between two floating particles decreases with increasing distance
between them.

The analysis just given is useful for determining the parameter values for which
the particles can remain trapped on two-fluid interfaces, as well as the sign and
magnitude of forces that act between two suspended particles, but to understand the
actual motion of particles on the interface we must solve the governing equations of
motion. Since the governing equations are complex, the dynamic behaviour of fluid
and particles is not well understood.

A small number of theoretical studies have looked at the drag and diffusion
coefficient of a spherical particle attached to a fluid interface (Brenner & Leal 1978,
1982; Goldman, Cox & Brenner 1967; Schneider, O’Neill & Brenner 1973; Majumdar,
O’Neill & Brenner 1974; Wakiga 1957; Redoev, Nedjalkov & Djakovich 1992; Danov
et al. 1995). Brenner & Leal have shown that the drag FD acting on a floating sphere
in the zero Reynolds number limit is FD = 3πηDUxfD , where Ux is the lateral velocity
of the sphere, D is the diameter, and fD is the drag coefficient which is O(1) and
depends on the ratio of viscosities of the upper and lower fluids.

The only experimental study on determining drag coefficients of floating particles
is by Petkov et al. (1995). They calculated the drag coefficients for particles of sub-
millimetre radius by measuring the particle velocity under the action of a well-defined
external force. They showed that the capillary interactions are quite strong and very
long range. Danov et al. (1995) performed numerical simulations to obtain the drag
coefficients for floating spheres, but they assumed that the interface between the two
fluids stays flat and the particle translates with a constant velocity along the interface.

To understand the dynamics of clustering and self-assembly of particles due to
capillarity, we have developed a numerical package which treats the problem by
direct numerical simulation. The method is as exact as numerical methods allow; in
particular, the changing shape of the meniscus and the hydrodynamic forces which
move particles are computed and not modelled. At each time step, we solve the
governing mass and momentum conservation equations for the two fluids, compute
the forces acting on the particles and then move them using Newton’s equations
for rigid solids. The interface shape changes in response to the fluid motion while
satisfying the contact angle or contact line requirement on the particle surface. In
addition, across the interface the fluid properties change suddenly and a capillary
force acts between the two fluids.

We have performed dynamic simulations of spherical particles for which the contact
angle is maintained at the equilibrium value and the position of the contact line
changes, as well as for floating disks with sharp edges. For floating disks, the meniscus
remains pinned at the rim even when the disk moves relative to the interface, but
the contact angle at the rim changes. In our numerical study it is assumed that
the interface is initially flat and the top surface of the disk is in the plane of the
interface. As the disk is denser than the liquid, it sinks but the contact line remains
at the rim. Consequently, the interface near the rim becomes more vertical, increasing
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the vertical component of the capillary force. In our code, the contact line is kept
at the sharp edge of a floating cylindrical particle by making the level set function
vanish on the rim.

In the next section we will state the governing equations for the fluids and the
particles, briefly describe the level set and distributed Lagrange multiplier approaches
and present our finite element method. A detailed description of the numerical method
is included in the Appendix. In § 6, we will discuss a convergence study that shows
that the numerical results are independent of the mesh size as well as the time step
size and present results for the transient motion of particles along two-fluid interfaces.

4. Governing equations and dimensionless groups
In our numerical studies of particle motion in two-fluid interfaces we will assume

that the fluids are immiscible and Newtonian. The particles are assumed to be rigid.
Let us denote the domain containing the two liquids and N particles by Ω , the
domain boundary by Γd , and the interior of the ith particle by Pi(t). The governing
mass and momentum conservation equations for the fluid phases can be written as

ρ

[
∂u
∂t

+ u · ∇u
]

= ρg − ∇p + ∇ · σ + γ κδ(φ)n; ∇ · u = 0 in Ω\P (t), (4.1)

u = uL on Γd, (4.2)

u = U + ω × r on ∂P (t), (4.3)

with the extra stress tensor σ =2ηD, ρ is the fluid density which is different for the
two fluids, p is the pressure, D is the symmetric part of the velocity gradient tensor,
δ(.) is the Dirac delta function, n is the outer normal at the interface, γ is the surface
tension, κ is the mean surface curvature, φ is the distance from the interface, η is the
viscosity which is different for the two fluids and uL is the prescribed velocity on Γd .
The surface tension force acts along the interface between the two fluids.

The particle velocity U and angular velocity ω are governed by

M
dU
dt

= M g + F, (4.4)

d(IP ω)

dt
= T , (4.5)

U |t=0 = U0, ω|t=0 = ω0, (4.6)

where M and IP are the mass and moment of inertia of the particle. The particle
density is denoted by ρP . The force F acting on a particle in the above equations is

F =

∮
(−p I + σ ) · n dA +

∮
CL

Γ ds (4.7)

The first term on the right of (4.7) is the force on the particle due to stresses generated
by fluid motion; the second term∮

CL

Γ ds = γ

∮
CL

nc ds (4.8)

is the capillary force, Γ = γ nc is a line stress on the contact line (CL) and nc is the
capillarity unit vector which lies in the interface and is normal to the contact line.
This unit vector gives the direction of the action of the capillary force. A numerical
algorithm for constructing nc is given in § 5. Similarly, the torque T acting on the
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particle is given by

T =

∮
(x − X) × [(−p I + σ ) · n] dA +

∮
CL

(x − X) × Γ ds. (4.9)

Here X is the centre of the particle, the first term gives the torque due to the fluid
stress and the second that due to the capillary force acting on the contact line. For a
spherical particle, which is one of the cases considered in this paper, if the interfacial
tension γ is constant, the torque due to the interfacial tension is zero (see Singh &
Hesla 2003).

The shape of the meniscus must be compatible with conditions which are prescribed
at the contact line on every particle and at remote boundaries; for spherical particles
the contact angle α is prescribed (see figure 9), but the contact line evolves during
motion. For disks hanging at the sharp edge, the position of the contact line is
prescribed and the contact angle changes. At remote boundaries different conditions
could be considered, but in our simulations we have required the interface to be
flat there. The motion of particles in fluid interfaces is very complex because the
prescribed value of the contact angle is to be applied at the contact lines whose
positions cannot be prescribed a priori and at the sharp edges the contact angle is
not known a priori.

A particle placed in a two-fluid interface can be in a state of equilibrium provided
its buoyant weight is equal to the z-component of the capillary force. The capillary
force changes when the particle sinks or rises or the interface deforms to satisfy the
contact angle requirement. Clearly, for a particle moving laterally along the interface,
the vertical acceleration is small, and thus the z-component of (4.4) is

0 = −Mg + k ·
∮

(−p I + σ ) · n dA + γ

∮
CL

k · nc ds, (4.10)

where k is the unit vector in the z-direction. The last term of (4.10) is the vertical
projection of the capillary force which depends on the contact angles. For isolated
spheres or disks in equilibrium (4.10) and the vertical projection of (4.1) with u =0
reduce to equation (2.5) or (2.8).

The x-component of the particle momentum equation, which governs its lateral
motion, can be written as

M
dUx

dt
= i ·

∮
(−p I + σ ) · n dA + γ

∮
CL

i · nc ds, (4.11)

where i is the unit vector in the x-direction. The first term on the right-hand side is
the x-component of the fluid stress and the second is the x-projection of the integral
of nc around the contact line.

If we assume that a particle is accelerating slowly, which is the case, for example,
when the two attracting particles are far from each other, then the two terms on
the right-hand side of (4.11) balance each other. In the low Reynolds number limit,
Brenner & Leal (1978) expressed the drag FD acting on a sphere moving along the
interface as

FD = 3πηLDUxfD (4.12)

where fD is the drag coefficient, which is of order one and depends on the viscosity
ratio of the two fluids, the contact angle and the deformation of the interface which
in turn depends on the density of the particle. Under these approximations, equations
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(4.11) and (4.12) give

0 = 3πηLDUxfD + γ

∮
CL

i · nc ds. (4.13)

Equation (4.13) can be solved to obtain the lateral velocity Ux of the particles; Ux is
proportional to γ /ηL, the ‘capillary velocity’ scale.

Petkov et al. (1995) used (4.13) for estimating the drag coefficient of floating
spherical particles attracted by a plate. They measured Ux in an experiment and used
the analytical expression for the horizontal force obtained by Kralchevsky et al. (1994)
which is related to the integral term in (4.13). They found that the drag coefficient
depends on the viscosities of the upper and lower fluid, as was shown by Brenner &
Leal. The experimental values of the drag coefficient for several fluid–particle
combinations were found to be of O(1). The drag coefficient was greater than one for
heavy particles, since they cause a greater deformation of the interface. They estimated
the drag coefficients when the distance between the particle and the plate was greater
than 35R, where R is particle radius; for smaller distances (3.1) is not accurate because
the inertial effects are not negligible. The estimate of the lateral capillary force they
used is accurate only when the distance between the particle and the plate is large.

Danov et al. (1995) performed numerical simulations to study the dependence of
the drag on a spherical particle translating in the interface on the ratio of viscosities.
In their simulations, it is assumed that the interface between the two fluids is flat
and the particle velocity is constant. They found that the agreement with experiments
deteriorates with increasing particle density because interfacial deformation becomes
not negligible.

In this paper we study problems for which inertial effects and time-dependent
changes in the interface shape in response to particle motion are important. This
happens to be the case when the distance between two floating particles is of the
order of the particle radius because the interface shape changes continuously and the
particles accelerate as they move toward each other.

The buoyant weight of particles is an important quantity in the description of the
dynamics of capillary attraction. To see how it enters, we first remove the hydrostatic
head from the pressure and write

p̂ = p + ρgz. (4.14)

In (4.1), the interface is given by

z = h(x, y, t). (4.15)

The contact line can be specified by zc, where h intersects the particle surface. Using
(4.14), we find the pressure force acting on the particle∮

p n dA =

∮
(p̂ − ρgz) n dA =

∮
p̂n dA − ρUVUg − ρLVLg, (4.16)

where VU is the volume of the particle above the contact line and VL is the volume
below and M = ρP g(VU + VL). We may now write (4.4) as

M
dU
dt

= [(ρP − ρU )VU + (ρP − ρL)VL] gk+

∮
(−p̂ I + σ ) · n dA+γ

∮
CL

nc ds. (4.17)

The first term on the right-hand side of (4.17) is only a portion of the buoyant weight
(see equation (2.3)). For isolated spheres, with a prescribed contact angle, the contact
line will be a circle on the sphere, so that the unknowns are VU , VL and zc = h(x, y, t).
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For the disk hanging on the sharp rim, VU =0, VL =V and the contact angle ψ is
unknown. Equation (4.5) can be written as

d(IP ω)

dt
=

∮
(x − X) × [((−p̂ + ρgz)I + σ ) · n] dA + γ

∮
CL

(x − X) × nc ds. (4.18)

The scaling parameters for equations (4.1)–( 4.1), (4.17) and (4.18) are

[D, U, D/U, ηLU/D, U/D, ρL]

= [diameter, velocity, time, stress, angular velocity, density]. (4.19)

Here ηL and ρL are the viscosity and density of the lower liquid and D = 2R is the
diameter of the sphere or disk. The dimensionless equations are then in the form

l

[
∂u
∂t

+ u · ∇u
]

= −∇p̂ +
1

Re
∇ · σ +

1

We
κδ(φ)n; ∇ · u = 0 in Ω\P (t), (4.20)

Re lp

β

dU
dt

= −GRe((lP − lU )VU + (lP − 1)VL)k

+

∮
(−p̂ I + σ ) · n dS +

1

Ca

∮
CL

nc ds, (4.21)

Re lp

β

dI ′
P ω

dt
=

∮
(x − X) ×

[((
−p̂ +

ρgzD

ηLU

)
I + σ

)
· n

]
ds

+
1

Ca

∮
CL

(x − X) × nc ds, (4.22)

where k is the unit vector along the z-direction. The particle mass M = ρP D3/β ,
where β = 6/π for a sphere and β = 4D/πh for a disk with h being the disk height.
The particle moment of inertia IP = M I ′

P D2, where I ′
P is the dimensionless moment

of inertia. It can be shown that the term proportional to ρgz in (4.22) vanishes when
the particle is a sphere, but does not vanish when the particle is a disk.

The dimensionless parameters which define the motion of particles are

[Re, G, Ca] =

[
ρLUD

ηL

,
gD

U 2
,
ηLU

γ

]
= [Reynolds, gravity, capillary] numbers, (4.23)

the contact angle, and the property ratios are

[l, lp, lU , m] =

[
ρ

ρL

,
ρP

ρL

,
ρU

ρL

,
ηU

ηL

]
(4.24)

where the subscript ‘L’ refers to the lower liquid and ‘U ’ to the upper liquid. The
density parameter l is equal to one in the lower liquid and in the upper fluid it
is ρU/ρL and the Weber number We =ReCa. In our numerical simulations, we use
the dimensional equations (4.1)–(4.4), where the hydrostatic pressure variation is not
removed from the pressure.

The selection of a characteristic velocity U for the definition of the dimensionless
parameters in (4.19) is ambiguous since a characteristic velocity is not prescribed in
the data. A natural choice for the velocity is the capillary velocity U = γ /ηL, which
is suggested by other problems of motion driven by surface tension. With this choice
we may compute

[Re, G, Ca] =

[
ρLγD

η2
L

,
gη2

LD

γ 2
, 1

]
(4.25)

from the prescribed data.
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5. Numerical method
In this section we will briefly describe the key features of our numerical scheme. A

detailed description of the numerical algorithm is included as an Appendix.
To perform direct numerical simulation of the motion of rigid particles trapped in

a two-fluid interface, we must solve the governing mass and momentum conservation
equations for the two fluids, compute the forces acting on the particles and then move
them using Newton’s equations (4.4). This is a difficult task because the interface
shape changes as the particles move and the capillary force between the two fluids
must be computed subject to the constraint that the contact angle is prescribed on a
smooth surface and the contact line is prescribed on edges.

In this study we will assume that the dynamic contact angle is the same as the static
contact angle. This enforcement of the contact angle on the particle surface causes
the contact line to move in a way which may be described as a capillary-induced
motion of the contact line due to a prescribed contact angle (see Friedrichs & Guceri
1993 and Sussman 2001 and references therein). At sharp edges, the motion of the
particles is computed under the constraint that the interface remains pinned to the
sharp edges of particles so that the contact angle changes as the motion proceeds.
The contact angle can vary within the limits specified by the Gibbs extension of the
Young–Dupré law.

In this work the level-set method is used to track the interface (see Osher & Sethian
1988; Sussman, Smereka & Osher 1994; Pillapakkam & Singh 2001; Sussman 2001).
The level-set method works efficiently on a regular fixed grid and is compatible with
the distributed Lagrange multiplier method (DLM) which will be used to track the
motion of rigid particles (see Glowinski et al. 1999 and Singh et al. 2000). The DLM
method also works efficiently on regular fixed grids. There are several other numerical
approaches available for tracking the interface between two immiscible liquids, e.g. the
surface tracking method (Unverdi & Tryggvason 1992), the volume of fluid method
(Hirt & Nichols 1981), the moving grid methods (Glowinski et al. 1992) and the
mapping method (Ryskin & Leal 1984), that can be used with the DLM method to
study dynamics of floating particles.

In the level-set method, the interface position is not explicitly tracked, but is defined
to be the zero level set of a smooth function φ, which is assumed to be the signed
distance from the interface. In order to track the interface, the level-set function is
advected according to the velocity field. One of the attractive features of this approach
is that the method does not require any special treatment when a front splits into
two or when two fronts merge.

The key idea in the level-set method is to advect φ with the local velocity, i.e.

∂φ

∂t
+ u · ∇φ = 0. (5.1)

As φ is a smooth function, it is relatively easy to numerically solve the above equation
to update the interface position. In our implementation, it is assumed to be negative
for the upper fluid, positive for the lower fluid and zero along the interface. The
method also allows us to enforce the contact angle on the rigid particle surfaces and
it is relatively easy to implement it in both two and three dimensions.

The motion of particles is tracked using a DLM method. One of its key features
is that the fluid–particle system is treated implicitly by using a combined weak
formulation where the forces and moments between the particles and fluid cancel,
as they are internal to the combined system. The flow inside the particles is forced
to be a rigid-body motion using the distributed Lagrange multiplier method. This
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multiplier represents the additional body force per unit volume needed to maintain
rigid-body motion inside the particle boundary, and is analogous to the pressure
in incompressible fluid flow, whose gradient is the force needed to maintain the
constraint of incompressibility.

In our numerical scheme the Marchuk–Yanenko operator splitting technique is
used to decouple the difficulties associated with the incompressibility constraint, the
nonlinear convection term, the rigid-body motion constraint and the interface motion.
The operator-splitting gives rise to the following four sub-problems: an L2 projection
problem for the velocity and the pressure; a nonlinear advection–diffusion problem
for the velocity; a distributed Lagrange multiplier problem that forces rigid-body
motion within the particles; and an advection problem for the interface. Details of
this method are set out in the Appendix.

5.1. Reinitialization of φ

The level-set function φ is reinitialized to be a distance function after each time step
by solving the following equation obtained in Sussman et al. (1994) for the steady
state

∂φ

∂t
+ w · ∇φ = S(φ0) (5.2)

where φ0 is the distribution to be reinitialized and

w = S(φ0)
∇φ

|∇φ| .

Here S(φ0) is the sign function, i.e. S(φ0) = 1 if φ0 > 0 and S(φ0) = −1 if φ0 < 0. In order
to avoid discontinuities, in our code we use the following smoothed sign function:

S(φ0) =
φ0√

φ2
0 + h2

e

,

where he is equal to one and half times the element size. Equation (5.2) is a first-
order hyperbolic partial differential equation which is solved using a positive only
upwinding scheme described in Singh & Leal (1993). Clearly, the characteristics of
(5.2) point in the direction of w. Therefore, for the points inside the upper fluid w

points upwards away from the interface and for the points inside the lower fluid it
points downwards. Thus, (5.2) can be solved by specifying the boundary condition
φ = φ0 at the two-fluid interface φ = 0.

5.2. Variation of fluid properties across the interface

In our finite element scheme the fluid viscosity is assumed to jump across the interface,
i.e.

η =




ηL if φ > 0

0.5(ηL + ηU ) if φ = 0
ηU if φ < 0.

(5.3)

Here ηL and ηU are the viscosities of the lower and upper fluids, respectively. The
fluid density, on the other hand, is assumed to vary smoothly across the interface

ρ =




ρL if φ > he

ρU if φ < −he

0.5(ρL + ρU ) + 0.5(ρU − ρL) sin

(
πφ

2he

)
otherwise,

(5.4)
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where he is equal to one and half times the element size, and ρL and ρU are the
densities of the two fluids, respectively. This smoothing of the density is similar to
that used by Sussman et al. (1994), and is needed for avoiding numerical instabilities
when the density ratio ρL/ρU is large.

The surface tension force is smoothed and acts only on the elements for which φ

is smaller than he. This is done by approximating δ(φ) in (4.1) by a mollified delta
function δhe

(φ) using the approach described in Sussman et al. (1994):

δhe
(φ) =




1 + cos(πφ/he)

2he

for |φ| < he

0 otherwise.
(5.5)

The error introduced by smoothing of the surface tension force is O(he). Equations
(5.4) and (5.5) require that φ be maintained as a distance function, which we do in
our implementation by reinitializing φ after each time step.

5.3. Contact angle and contact line conditions

The contact angle boundary condition on the particle surface, n · nφ = cos α, where n
is the unit outer normal on the particle surface and nφ = ∇φ/|∇φ| is normal to the
interface, is enforced using the approach described in Sussman (2001). Sussman used
this approach to prescribe the contact angle on a stationary flat wall by extending
φ to the ‘outside’ of the fluid domain. In this article the same approach is used to
prescribe the contact angle of the two-fluid interface on the surface of a moving
sphere. Let us define t and n2 as

t =
nφ × n

|nφ × n| , n2 =
t × n

|t × n| .

Notice that t is tangent to the contact line, and thus n2 is orthogonal to the contact
line and lies in the tangent plane of the particle surface (see figure 12a). The next
step is to construct a unit vector uex which is tangent to the interface with contact
angle α, points inwards, and lies in the plane formed by n and n2; nc = −uex is the
unit vector which gives the direction of the action of the capillary force. It is easy to
verify that uex depends on c = nφ · n2 and is given by

uex =




n − cot(π − α)n2

|n − cot(π − α)n2| if c < 0

n + cot(π − α)n2

|n + cot(π − α)n2| if c > 0

n if c = 0.

(5.6)

To enforce the prescribed contact angle, φ is extended inside particles and on their
surfaces by solving

∂φ

∂t
+ uex · ∇φ = 0. (5.7)

In other words, for all nodes inside and on the particle surface (5.7) is used to modify
φ. The resulting extended level-set function satisfies the contact angle on the particle
surface.

The contact line on the particle surface moves when the contact angle is enforced
using (5.7). This could be called the capillary-induced motion of the contact line due
to a prescribed contact angle. This approach has been used in many past numerical
studies of problems involving moving contact lines (see Friedrichs & Guceri 1993 and
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Figure 12. (a) The unit normal to the particle surface n, the tangent to the contact line t
and the normal to the interface nφ are shown. (b) A schematic of the interface shape and the
contact line for the initial and steady states. In simulations the contact angle on the particle
surface is prescribed to be 135◦ which is done by extending the level-set function to the inside
of the particle. The contact line moves downwards because of the interface deformation near
the particle and this decreases the vertical component of capillary force.



52 P. Singh and D. D. Joseph

Sussman 2001 and references therein). For example, in injection moulding problems
this approach has been used to track the motion of a liquid front advancing into
empty moulds.

Clearly, this motion of the contact line on the particle surface is in conflict with
the no-slip condition for viscous fluids (see Dussan V. & Davis 1974; Dussan V.
1976; Kistler & Scriven 1993 and references therein). However, if the contact line
position on the particle surface is not updated, the contact line cannot move. In the
capillary-induced-motion approach the no-slip condition is satisfied before and after
the contact line moves; this pragmatic procedure could be called an effective numerical
slip. This method of moving the contact line when the contact angle is prescribed has
been used by Friedrichs & Guceri 1993 and Sussman 2001. An alternative approach
used in some studies is to use a slip condition in a small neighbourhood of the contact
line to ensure that it moves (see Kamal, Goyal & Chu 1988 and references therein).
The slip velocity of the contact line is assumed to be proportional to the shear stress
on the wall. This approach however does not ensure that the contact angle remains
constant. Another aspect of the floating particle problem not treated here is that the
contact angle for advancing and receding contact lines is different which can change
the dynamical behaviour of floating particles.

6. Initial value problems for the evolution of floating particles to equilibrium
Here we report results of simulations of initial value problems for spheres and disks

which are initially motionless, but not in equilibrium, to an equilibrium in which they
are again motionless. The particles are heavier than the heavy liquid below and
they float. Initially, the particles are motionless and imbedded in a flat interface;
the spheres are centred with their midplane in the interface and the contact angle is
fixed and held at 135◦ throughout the simulation. The assumed value of the contact
angle is likely to be insensitive to the contact line speed in real experiments, as the
contact angle is relatively large. Disks are pinned at the sharp edge of the upper rim
throughout the simulation.

We do simulations for one sphere, one disk, two and four spheres and two disks.
Initially, particles are not in equilibrium because they are heavy and must sink
to equilibrium. For all cases, the particles reach an equilibrium in which they are
motionless and in a balance between capillary forces and the buoyant weight; for single
particles, spheres and disks, the computed values at equilibrium can be compared
with the analytical expressions (2.5) and (2.8) and the agreement is satisfactory. The
evolution to equilibrium for more than one particle takes place by sinking and capil-
lary attraction; at the end the particles have self-assembled.

The conditions under which spheres and disks evolve to equilibrium are different.
The interface near the spheres adjusts to meet the contact angle requirement and
they sink until the buoyant weight becomes equal to the vertical component of the

Figure 13. The particle position and the interface shape and the velocity field in the domain
midsection are shown. The length of velocity vectors is magnified 60 times and shown at every
other node. The length of the velocity vectors in (b) (not shown) is smaller indicating that the
fluid velocity decreases with time. The oblique and side views are shown. (a) t = 0.003. The
fluid velocity is largest near the contact line where the interface curvature is large. (b) t = 0.08.
The dimensionless parameters based on the maximum particle velocity are (Re=0.064,
G =1916.0, Ca= 0.02) and based on the capillary velocity are (Re= 3.2,G = 0.766). After
steady state is reached, the velocity is approximately zero everywhere in the domain.
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capillary force. The disks, on the other hand, sink causing the interface to deform and
increasing the contact angle and the vertical component of the capillary force. The
disks stop sinking when the vertical component of the capillary force becomes equal
to the buoyant weight.

An attractive force between floating particles arises because the meniscus between
them drops in much the same way as a water meniscus will sink in a hydrophobic
capillary tube. This dropping of the meniscus inside relative to the outside produces an
asymmetry which generates attractive capillary forces. For spheres, since the contact
angle is fixed, the contact line between the spheres drops. For disks, since the contact
lines are fixed at the rim, the contact angles between the two disks decrease. In both
cases, the asymmetry results in an attractive lateral capillary force acting on the
particles.

The domains used in our simulations are box shaped with rectangular cross-sections.
The coordinate system used throughout this paper is shown in figure 13. The x-, y-
and z-components of particle velocity will be denoted by u, v and w, respectively.

We will also assume that all dimensional quantities, unless otherwise noted, are in
the CGS units. The lower fluid density ρL = 1.0 g cm−3. The viscosity of the lower
fluid, and the density and viscosity of the upper fluid are varied. The particle density
is assumed to be greater than one. The values of the interfacial tension are selected to
ensure that the particle remains suspended in the interface. The acceleration due to
gravity g =981.0 cm s−2 and acts along the negative z-direction. The initial velocities
are assumed to be zero everywhere.

The no-slip boundary condition is applied on the surface of the box-shaped com-
putational domains. The contact angle between the interface and the box boundaries
is assumed to be 90◦, the interface near the walls is flat.

We next present the results for floating spheres and disks, to demonstrate that the
scheme works correctly, and that it reproduces the expected dynamical behaviour and
the equilibrium state.

6.1. Initial value problems for floating spheres

In this subsection, we compute the motion of spheres released in the interface;
the contact line intersects the sphere at a place different than that required for
equilibrium.† The sphere diameter is assumed to be 0.2 cm. The initial interface shape
is flat, except near the sphere surface where a contact angle of 135◦ is prescribed (see
figure 12). The parameters are in the range for which a sphere trapped on the interface
can be in equilibrium. The equilibrium interface shape and the floating height depend
on the problem parameters.

6.1.1. Motion of a single sphere

When a sphere is suddenly released in the interface, the meniscus shape evolves to
equilibrium. During this time, the velocity field in the two fluids is non-zero and the
capillary force acting on the particle varies; the sphere velocity and its position in
the interface change with time. The final equilibrium position described by analytical
expression (2.5), however, is independent of these transients and can be used to verify
the accuracy of numerical results.

† If the initial particle position was such that the interface did not touch the particle surface,
then we would also need to address the problem of an interface coming in contact with a solid
surface. This would require us to include additional physics to specify the conditions under which
an interface can touch a solid surface. This physics is not included in the current version of our
code.
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Figure 14. The vertical component of sphere velocity w released from rest on the interface
is shown as a function of time for three different values of the time step. The curve marked
mesh B is for a more refined mesh. The density and viscosity of the lower fluid are 1.0 g cm−3

and 1.0 P, and those of the upper fluid are 0.1 g cm−3 and 0.1 P. The interfacial tension is
16.0 dyn cm−1 and the particle density is 1.05 g cm−3.

We first present results that show that the trajectory of a sphere released in the
two-fluid interface is independent of the mesh resolution and the time step. We have
used two regular tetrahedral meshes to show that the results converge with mesh
refinement. In a tetrahedral element there are seven velocity and four pressure nodes.
The rigid-body constraint inside particles is enforced using uniformly distributed
collocation points. The number of velocity nodes and elements in the first mesh are
117 649 and 13 824, respectively. In the second mesh, referred to as mesh B, there are
274 625 velocity nodes and 32 768 elements. The time step for these simulations is
0.0001, 0.00005 or 0.000025.

The sphere density is 1.05 g cm−3 and the interfacial tension is 16.0 dyn cm−1.
The upper fluid density is 0.1 g cm−3 and the viscosity is 0.1 P. The initial velocity
distribution in the fluid, and the sphere’s linear and angular velocities are assumed
to be zero. The domain is assumed to be cubical with sides 0.4 cm. The sphere centre
is at a distance of 0.02 cm above the undeformed interface which passes though the
domain centre.

In figure 14, w is plotted as a function of time for three time steps and two mesh
resolutions. When the time step is reduced or when the mesh is refined the variation
of w with time remains approximately the same. This allows us to conclude that the
numerical results converge with both mesh and time step refinements.

Figure 14 shows that the vertical component of the sphere velocity w increases for
t � 0.005 s and then it starts to decrease†; it becomes negative for t ≈ 0.019 s and then
increases again and becomes very small and fluctuates around zero for t � 0.06 s. The
other components of velocity u and v remain small for all times. We will assume
that for t = 0.06 s the sphere has reached a state of equilibrium with h2 = 0.156R and

† Professor Howard Stone has suggested that the floating particle essentially behaves as a forced
spring–mass system (gravity and surface tension, with the contact angle, enter as the original
driving force for motion, and the density difference of the two fluids is like a spring), with
damping provided by the fluid viscosity. Hence, one can derive a dimensionless ODE of the form
d2Z/dT 2 + AdZ/dT + BZ = 1, where Z is the scaled position, T is the dimensionless time, A is
a coefficient that involves the fluid viscosity and B is the ratio of buoyancy to particle mass. The
right-hand side is 1 because of the choice of length and time scales. In particular, he defined
z∗/L = ( 1

2
(ρ1 + ρ2) − ρp)/(ρ1 − ρ2) and T = t/tc , Z = z/z∗, where tc is conveniently chosen to include

surface tension and buoyancy that drives the original motion. Also, see the footnote in § 6.2.1.
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γ (dyn cm−1) h2/R R cos θc (cm) θc (deg.) Fp + Fc (g cm s−2)

10 0.237 0.257 75.00 4.33
14 0.173 0.376 67.95 4.35
16 0.156 0.419 65.26 4.35
20 0.130 0.466 62.28 4.36
25 0.114 0.514 59.07 4.33

Table 2. The interfacial deformation h2/R, the floating height R cos θc from numerical com-
putation are used to compute the sum of the pressure and vertical component of capillary forces
from (2.1) and (2.3) for 5 values of the interfacial tension. The sphere density is 1.05 g cm−3

and its weight is 4.315 g cm s−2. The density of lower fluid is 1.0 g cm−3 and that of the upper
fluid is 0.1 g cm−3. For all five cases, Fp + Fc is approximately equal to the particle weight; we
get the correct value of the sphere weight from simulations. As expected, the sphere’s floating
height increases and the interface deformation decreases with increasing surface tension. The
interfacial deformation for these calculations is restricted because the domain size is relatively
small. But, we can still compare these values as the same domain is used for all interfacial
tension values.

ρU (g cm−3) h2/R R cos θc θc (deg.)

0.1 0.156 0.419 65.26
0.01 0.159 0.417 65.34
0.0016 0.161 0.417 65.37

Table 3. The interfacial deformation h2/R, the floating height R cos θc and the point of contact
θc are listed as a function of the upper fluid density. The interfacial tension is 16 dyn cm−1.
The sphere density is 1.05 g cm−3 and its weight is 4.315 g cm s−2. The density of lower fluid is
1.0 g cm−3 and that of the upper fluid is varied. The floating height increases and the interface
deformation decreases with decreasing density of the upper fluid.

θc = 65.26◦. The computed values given in table 2 are in good agreement with the
equilibrium formula (2.5). We may therefore conclude that the state of equilibrium is
captured correctly by our code. The dimensionless parameters based on the maximum
vertical velocity are: Re =0.064, Ca =0.02, G =1916.0 and We = 1.28 × 10−3.

To understand the initial increase in w, we notice that the angle θc giving the
position of the contact line in figure 13(a) is larger than that for the equilibrium
state shown in figure 13(b) (also see figure 12b). Thus, the vertical component of
capillary force is initially larger than the final value and as a result the particle moves
upwards. This is a consequence of the fact that initially the interface is approximately
flat everywhere except near the sphere (see figure 13a). The large curvature of
the interface near the sphere at early times is reduced by interfacial tension and
the interface assumes its equilibrium shape. The contact line moves downwards,
reducing the vertical component of the capillary force. The vertical component of the
pressure force in figures 13(a) and 13(b) are different, but since in the case shown in
figure 13(a) the fluid velocity is not small, the pressure force cannot be determined
using hydrostatics.

To validate our code further, we performed calculations for five different values of
interfacial tension γ while keeping the other parameters fixed. In table 2 we have
listed the floating heights, defined to be the vertical distance of the particle centre
from the contact line, and the sum of the pressure and vertical component of capillary
forces acting on the particle for these five values of the interfacial tension. For all



Fluid dynamics of floating particles 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

(a)

(b)

(c)

(d )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0 0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.2
0.4 0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.2
0

0
0.6 0.4 0.2

0.7x

x

y

y

0.2
0.4

0 0
0.6 0.4 0.2x

y

z

z

0.1

0.2

0.3

0
0

0

0.6 0.4 0.2x

y

z

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

Figure 15. The positions of two spheres suspended in the two-fluid interface and the velocity
distribution at the domain midsection are shown at t =0.0042, 0.175, 0.225 and 0.339 (a–d).
The length of velocity vectors is magnified 100 times and shown at every other node. The
length of the velocity vectors is largest in (a) and smallest in (d) which indicates that the
maximum velocity in the domain is decreasing with time. The particles are moving toward
each other in the interface. The particles are ‘supported’ by the capillary force associated with
the deformation of the interface. The surface tension is 16.0 dyn cm−1, the particle density is
1.05 g cm−3 and the density of the top fluid is 0.01 g cm−3 and that on the bottom is 1.0 g cm−3.
The initial distance between the spheres is 3.2R. The dimensionless parameters based on
the maximum particle velocity are (Re = 0.028,G =1.0 × 104,Ca = 0.00875) and based on the
capillary velocity are (Re= 3.2,G = 0.766).
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cases in equilibrium, as required, Fp + Fc is approximately equal to the particle’s
weight. There are small differences due to numerical errors.

In table 3 we have listed the floating heights for two additional cases where
the density of the upper fluids are 0.01 g cm−3 and 0.0016 g cm−3, and the corres-
ponding viscosities are 0.033 P and 0.0166 P. The interfacial tension is 16.0 dyn cm−1.
The time step used for these calculations was 2 × 10−5 s. It is necessary to use a
smaller value of the time step for these simulations because the ratio of lower and
upper fluid densities is larger. The time step used is smaller also when the ratio of the
lower and upper fluids viscosities is larger. The domain was discretized using mesh
B described above. Table 3 shows that the floating height slightly decreases when the
density of the upper fluid is reduced.

The equilibrium analysis, presented in § 2, assumes that the fluid extends to infinity
in the x-, y- and z-directions which is not the case for our simulations. This may
explain some differences between our simulations and the analytical results. These
differences are expected to decrease with increasing box size. We also wish to note
that for our simulations the magnitude of fluid velocity decreases as the state of
equilibrium is approached, but it does not decrease beyond a certain value which
depends on the fluid viscosity, surface tension and the interface curvature. The flow
develops steady spurious circulation cells around the interface that are similar to
those seen in simulations of drops (Scardovelli & Zaleski 1999). It has been noted by
D.D. Joseph that these circulation cells arise in simulations because the discretized
equation for the vorticity, which can be obtained by taking the curl of the momentum
equation, contains a non-zero contribution from the layer (5.4) representing the delta-
function in the level-set method. This creates vorticity along the discretized interface
which diffuses into the domain. The presence of these cells, however, does not seem
to affect the overall force balance, discussed in table 2, for equilibrium.

6.1.2. Motion of two spheres

We next present results for the case where two spherical particles are released near
each other on the interface at the same vertical height. The initial interface position is
assumed to be flat, except near the particle surfaces where a contact angle of 135◦ is
prescribed. The initial vertical height of the spheres is higher than for a single sphere
in equilibrium for the same parameter values. The parameters are assumed to be in
the range for which a single sphere can be in equilibrium.

For these calculations, the particle density is 1.05 g cm−3. The interfacial tension
is 16.0 dyn cm−1. The upper fluid density is 0.01 g cm−3 and viscosity is 0.033 P. The
initial velocities are assumed to be zero. The domain height is 0.4 cm. The domain
width in the x-direction is 0.4 cm and in the y-direction is 0.8 cm. The undeformed
interface passes though the domain centre and the particle centres are initially at a
height of 0.02 cm above the interface. The initial distance between the spheres in the
y-direction is 2.6 R or 3.2 R. The mesh resolution is comparable to that for the coarse
mesh in § 6.1.1.

We have already noted that when two or more spheres released in the interface
are close together they move towards each other due to the action of the lateral
component of the capillary force associated with the asymmetric deformation of the
interface around the particles. Figure 15(a) shows that for t = 0.0042 the interface
shape is deformed in a small region around the spheres and farther away it is relatively
flat; hence there is no lowering of interface. Consequently, at this time, the spheres
do not experience any lateral attractive force. But, as for a single sphere, the interface
height around the spheres decreases as time increases and, as a result, the contact



Fluid dynamics of floating particles 59

–0.1

0

0.1

0.2

0.3

0.4

0.05 0.10 0.15 0.20

dt = 0.0001

dt = 0.00005

dt = 0.000025

t

–0.1

0

0.1

0.2

F
/(
γD

)

0

0.2

0.4

0.6

(a) (b)

(c)

0.05 0.10 0.15 0.20
t

0.05 0.10 0.15 0.20
t

(y
2 

– 
y 1

)/
R

v 2
 –

 v
1

Figure 16. (a) The distance between the surfaces of spheres, (b) the approach velocity v2 − v1

and (c) the lateral capillary force are plotted as functions of time. The approach velocity v2 −v1

is shown for three different values of the time step. Notice that the approach velocity initially
increases as the interface height between the spheres decreases and then decreases as the gap
between the spheres becomes small. The initial distance between the spheres is 2.6R.

lines on both spheres move downward. The vertical component of capillary force,
which is initially larger than the final value, causes the spheres to move upward, but
as the contact lines move downward the vertical capillary force decreases and the
vertical velocities become negative. After this initial motion for t � 0.05 s, the vertical
velocities become relatively small, but remain negative as the spheres approach each
other. These initial transients in the velocities of the spheres could be diminished by
setting their initial positions and interface shape closer to those for the equilibrium of
an isolated sphere. This would however complicate the problem of prescribing initial
conditions and make the problem less realistic.

Snapshots at t = 0.0042, 0.175, 0.225 and 0.399 of the evolution to equilibrium are
shown in figure 15. At t =0.399 the spheres are close to equilibrium.

The magnitude of the lateral capillary force F/(γD) increases as the distance
between the spheres decreases, where F is the y-component of capillary force acting
on a sphere (see figure 16). This is also seen as an increase in the approach velocity
v2 − v1 plotted as a function of time in figure 16. However, the approach velocity
begins to decrease due to the lubrication forces when the gap between the spheres
is small enough. Simulations also show that when the distance between the spheres
is larger, the initial approach velocity is smaller, because the lateral component of
capillary force is smaller, and the time needed for the spheres to come together is
larger. This is in agreement with (2.17) which implies that the lateral force increases
with decreasing distance between the spheres. The dimensionless parameters based
on the maximum lateral velocity are (Re = 0.028, G =1.0 × 104, Ca = 0.00875).

The contact line and the interface shape evolve as the spheres move toward each
other. Therefore, the lateral component of the capillary force and the contribution of
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d (cm) R cos θc (cm) θc (deg.) h2/R

0.279 0.397 66.60 0.234
0.2493 0.388 67.13 0.289
0.2118 0.375 67.99 0.302

Table 4. The floating height R cos θc , the point of contact θc and the interfacial deformation
h2/R are shown as a function of the distance d between the spheres. The interfacial tension
is 16.0 dyn cm−1. The sphere density is 1.05 g cm−3. The density of the lower fluid is 1.0 g cm−3

and that of the upper fluid is 0.1 g cm−3. The floating height is computed based on the contact
line position on the sphere surface away from the gap. Notice that the floating height of the
spheres decreases and the interfacial deformation increases as they come closer. These values
should approach the values for an isolated particle when the distance d is large.

the pressure to the force change as the distance between the spheres decreases. Petkov
et al. (1995) measured the approach velocity of particles and found that when the gap
between the particles is smaller than O(30R), which is the case for our simulations,
the nonlinearity of the interface curvature also influences the approach velocity. For
the case described in figure 15 the simulations were stopped at t = 0.339 when the
distance between the spheres’ surfaces was reduced to 0.047R. The interface shape at
this time is shown in figure 15(d). Notice that the interface height between the spheres
in this figure is even lower and the interface shape is flatter. For the case where
the initial distance between the spheres’ surfaces is 0.6R the time taken to reach the
same separation is ∼0.181. The approach velocity remains relatively small for t � 0.04
during which the initial interfacial deformation takes place, which is approximately
the time interval in which a single sphere reached equilibrium in § 6.1.1.

In figure 17 the approach velocity and the dimensionless distance between the
spheres are shown for five additional parameter values. For these cases, the sphere
centres are initially at a height of 0.04 cm above the interface and the initial distance
between the spheres in the y-direction is 3.2R. These figures show that the approach
velocity becomes positive after a short time interval and increases as the spheres move
toward each other. The approach velocity decreases when the gap between the spheres
becomes small due to the lubrication forces. The lateral velocity for small times is
negative because when the spheres sink into the lower liquid the hydrodynamic force
is repulsive. From these figures we also conclude that the approach velocity increases
when the viscosity of the upper or lower liquid is decreased. It also increases when
the particle density or the surface tension coefficient is increased. The lateral velocity
contains oscillations when the Reynolds number is of order one or larger.

Another interesting consequence of the lowering of interface height and contact
lines between the spheres is a decrease in the vertical component of capillary force.
This component of the capillary force acts against gravity and keeps them floating
even though they are heavier than both liquids. This decrease causes the floating
height of the spheres to decrease slightly (see table 4). For example, the height for a
single sphere in § 6.1.1 for the same parameters was 0.419, but for the two spheres
in figure 15(d) it is 0.375, where they are almost touching. This decrease in the
floating height raises the contact line position everywhere except between the spheres
so that the vertical component of the capillary force returns to the value required
for balancing their buoyant weights (see figure 18). When the parameters are such
that the sum of the vertical component of the capillary and pressure forces is near
its maximum value for an isolated sphere, a decrease in the floating height would
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Figure 17. For caption see next page.

actually decrease the vertical component of total force. Therefore, if the spheres are
barely floating, a decrease in the floating height will cause them to sink. This suggests
that the clusters of spheres are more likely to sink than an isolated sphere.
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θc1
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θc2

Figure 18. The contact line and the interface shape near a floating sphere. The contact line
position on the left is lower, i.e. θc2 < θc1, as there is another sphere floating to the left (not
shown). Equation (2.1) implies that the vertical capillary force increases with increasing θc only
when θc is less than 109◦ (which depends on the contact angle). Thus, the vertical capillary
force acting on the right side of the sphere is larger than on the left side. But, if θc1 is greater
than 109◦, this may not be the case.

6.1.3. Motion of four spheres

For these calculations the sphere density is 1.05 g cm−3 and the interfacial tension
is 16.0 dyn cm−1. The upper fluid density is 0.1 g cm−3 and the viscosity is 0.1 P.
The motion starts from rest. The domain height is 0.4 cm. The width along the x-
direction is 0.8 cm and along the y-direction is 0.8 cm. The undeformed interface passes
though the domain centre. The initial positions of the four spheres are (0.4,0.22,0.22),
(0.4,0.58,0.22), (0.23,0.4,0.22) and (0.57,0.4,0.22). The mesh resolution is the same as
for the coarse mesh in § 6.1.1.

After initial transients have died out, the spheres move toward each other. Their
vertical velocity becomes small at t ≈ 0.05 and around this time the interface height
between the spheres begins to decrease.

In figures 19(a) and 19(b) the spheres and interface shape are shown at t = 0.002
and 0.096, respectively. In the first figure, the interface shape between spheres is not
significantly deformed and the lateral velocities are small and in the second figure the
interface between the spheres is lowered. The interface shape and the contact lines
for the spheres are no longer symmetric and thus the lateral component of capillary

Figure 17. The distance between the spheres and the approach velocity v2 − v1 are plotted
as functions of time. Notice that the approach velocity initially increases as the interface height
between the spheres decreases and then decreases as the gap between the spheres becomes small.
The initial distance between the spheres is 3.2R. (a) The parameters are: (lp =1.1, lU = 1.0,
m= 1.0), ηL = 0.1 P and γ = 2.0 dyn cm−1. The dimensionless parameters based on the maxi-
mum particle velocity are (Re= 0.38,G=5.4 × 103,Ca = 0.0095) and based on the capillary
velocity are (Re= 40.0, G =0.491). (b) The parameters are: (lp =1.1, lU = 1.0, m= 1.0),
ηL = 0.01 P and γ = 2.0 dyn cm−1. The dimensionless parameters based on the maximum parti-
cle velocity are (Re= 10.2,G = 784.8,Ca= 0.0025) and based on the capillary velocity are
(Re= 4000,G =4.9 × 10−3). (c) The parameters are: (lp = 1.01, lU = 10.0,m= 10.0), ηL =0.1 P
and γ = 16.0 dyn cm−1. The dimensionless parameters based on the maximum particle velocity
are (Re=5.12, G =29.9, Ca= 0.016) and based on the capillary velocity are (Re=320,
G =7.66 × 10−3). (d) The parameters are: (lp =1.005, lU = 2.0,m= 2.0), ηL = 0.1 P and γ =
4.0 dyn cm−1. The dimensionless parameters based on the maximum particle velocity are
(Re= 1.38, G = 412.1, Ca= 0.017) and based on the capillary velocity are (Re= 80,G = 0.12).
(e) The parameters are: (lp = 1.005, lU = 2.0,m= 1.0), ηL = 0.1 P and γ = 4.0 dyn cm−1. The
dimensionless parameters based on the maximum particle velocity are (Re= 1.26, G =496.3,
Ca=0.016) and based on the capillary velocity are (Re= 80,G =0.12).
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Figure 19. Oblique views showing the positions of four rigid spheres suspended in the two-
fluid interface at (a) t = 0.002 and (b) 0.096. After they are released, they move toward each
other. The surface tension is 16.0 dyn cm−1, the particle density is 1.05 g cm−3 and the density of
the top fluid is 0.1 g cm−3 and that on the bottom is 1.0 g cm−3. The dimensionless parameters
based on the maximum particle velocity are (Re= 0.032,G =7664.1,Ca = 0.01) and based on
the capillary velocity are (Re= 3.2,G = 0.766).

force acting on the spheres is not zero which causes them to move laterally towards
each other.

As spheres approach each other, the vertical component of capillary force decreases
due to the lowering of interface height between the spheres and thus the floating
heights of the spheres decrease slightly (see figure 19b). For example, the height for
a single sphere in § 3.1 for the same parameters is 0.419, for the two-sphere case it is
0.375, and for the four spheres in figure 19(b), where they are almost touching, it is
0.355.

6.2. Initial value problems for floating disks

The disks in our simulations are released with the top plane of the disk in the
plane of the undeformed interface. The disk velocity, its position and the interfacial
deformation change with time. The final state, described by expression (2.8), is
independent of these transients and can be used to verify the accuracy of numerical
results. In equilibrium, the interface shape is such that the capillary force is exactly
balanced by a jump in the pressure across the interface and therefore no fluid flow is
induced. The fluid velocity in simulations is small but non-zero.
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Figure 20. The vertical component of velocity w for a disk released in the interface is shown
as a function of time for two different values of the time step. The curve marked mesh B is
for a more refined mesh. The density and viscosity of the lower fluid are 1.0 g cm−3 and 1.0 P
and those of the upper fluid are 0.1 g cm−3 and 0.1 P. The interfacial tension is 5.0 dyn cm−1

and the particle density is 1.5 g cm−3. The dimensionless parameters based on the maximum
vertical velocity of the disk are (Re = 0.35,G=100.2,Ca = 0.014) and based on the capillary
velocity are (Re= 50,G = 0.039).

6.2.1. Motion of a single disk

We first discuss results that show that the trajectory of a disk released in the two-
fluid interface is independent of the mesh resolution and the time step (see figure 20).
We have used two regular tetrahedral meshes to show that the results converge
with mesh refinement. The rigid-body constraint inside particles is enforced using
uniformly distributed collocation points. The number of velocity nodes and elements
in the first mesh is 117 649 and 13 824, respectively. In the second mesh, referred to
as mesh B, there are 274 625 velocity nodes and 32 768 elements. The time step for
these simulations is 0.0001 s or 0.00005 s.

The disk radius is 0.1 cm and its density is 1.5 g cm−3. The interfacial tension is
5.0 dyn cm−1. The density of the upper fluid is 0.1 g cm−3 and its viscosity is 0.1 P.
Initially, all velocities are zero. The domain is cubical with sides 0.4 cm. The top
surface of the disk is in the plane of the undeformed interface which is at z = 0.28 cm.
The parameters are in the range for which a disk trapped in the interface can be in
equilibrium.

The vertical velocity w shown in figure 20 decreases initially with time because the
disk is denser than the liquid below and the vertical component of the capillary force
is zero, as the interface is not deformed.† The buoyant weight and the contact angle
increase simultaneously as the disk sinks (see figure 21).

We performed calculations for two additional values of the disk density ρp while
keeping the other parameters fixed. Figure 22 shows that heavier disks sink to a

† Professor Howard Stone has shown that the coefficients of his ODE model described in the
footnote of § 6.1 can be evaluated by assuming that L is equal to the disk radius and the viscous
friction is given by the Stokes drag law. For the physical parameters of this problem, he finds that
A= 1/2 and B = 1/2, approximately. The analytical solution of the ODE with these values looks
almost identical in form to the numerical solution of figure 20. This model, based on physical
arguments, therefore illustrates that some aspects of these systems can be quantitatively studied
with simple models.
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Figure 21. The disk position, the interface shape and the velocity field in the domain mid-
section are shown. The length of velocity vectors is magnified 60 times and shown at every
other node. The oblique and side views are shown. (a) t =0.0125 s, (b) t = 0.15 s. The dimen-
sionless parameters based on the maximum vertical velocity of the disk are (Re= 0.35,
G = 100.2, Ca = 0.014) and based on the capillary velocity are (Re= 50, G =0.039). After
steady state is reached, the velocity is approximately zero everywhere in the domain.

greater depth and the contact angle is larger. In table 5 we give the computed values
of h2/R and the forces Fp + Fc for the three values of ρp . For all cases, the computed
values of the force are approximately equal to the weight of the disk. Some small
differences are due to numerical errors. The equilibrium analysis of § 2 assumes that
the fluid extends to infinity in the x-, y- and z-directions which is not the case for
our simulations. This may explain small differences between our simulations and the
analytical results.
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x y

z

Figure 22. The oblique and front views of the floating disks and the interface shape. The
depth to which a disk sinks into the lower fluid increases with increasing disk density. (a) ρp =
1.1, (b) ρp = 1.2, and (c) ρp = 1.5.

6.2.2. Motion of two disks

We next present results for the case where two disks are released near each other
in the interface at the same vertical height. The domain height is 0.4 cm. The domain
width along the x-direction is 0.8 cm and along the y-direction is 0.4 cm. The disk
diameter is 0.1 cm and the height is 0.1 cm. The undeformed interface is at a distance
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ρ (g cm−3) weight (g cm s−2) h2/R Fp + Fc (g cm s−2)

1.1 6.78 0.15 6.86
1.2 7.40 0.21 7.38
1.5 9.24 0.28 9.26

Table 5. The interfacial deformation h2/R and the sum of the pressure and vertical component
of capillary forces obtained using (2.6) and (2.7) are shown as a function of the disk density.
The interfacial tension is 5.0 dyn cm−1. The density of lower fluid is 1.0 g cm−3 and that of the
upper fluid is 0.1 g cm−3. For all three cases, Fp +Fc is approximately equal to the disk weight.
Also notice that, as expected, the interface deformation increases with increasing particle
density.

of 0.23 cm from the bottom. The initial velocities are assumed to be zero. The mesh
resolution is comparable to that for the coarse mesh in § 6.2.1.

We first describe the case for which the particle density is 1.1 g cm−3, the interfacial
tension is 3.0 dyn cm−1, and the upper fluid density and viscosity are 0.1 g cm−3 and
1.0 P, respectively. The viscosity of the lower fluid is 10.0 P. The two disks are placed
at (0.32, 0.2, 0.18) and (0.48, 0.2, 0.18). The initial distance between the disks in the
x-direction is 3.2R. Figure 23(a) shows that at t = 0.04 the interface is deformed only
in a small region around the disks and the disks do not experience a lateral attractive
force. When the disks sink the contact angles increase. After this initial motion for
t � 0.12 s, the disks sink slowly, as they move toward each other.

In figure 23(b) the disks and the interface shape are shown at t = 0.2 s. The interface
height between the disks in figure 23(c) at t = 0.5 s is significantly lower than on the
sides. Since the contact angle between the disks is smaller, the lateral capillary force
is larger.

Figure 24(a) shows that the approach velocity u2 − u1 first increases and then
decreases with time. The approach velocity increases with time because the lateral
component of the capillary force increases as the distance between the disks decreases.
This also causes the disks to slightly tilt in the (x, z)-plane. For all cases simulated in
this paper it is smaller than 0.5◦. The time taken by the disks to come together increases
with the initial distance not only because the distance is larger, but also because the
approach velocity decreases with increasing distance. Figure 24(a) also shows that
the approach velocity starts to decrease when the gap between disks becomes small
compared to the disk radius due to the activation of lubrication forces.

In figure 24 we have plotted the separation distance d/R � 2 and the approach velo-
city u2 −u1 as a function of time for three initial values of d/R =(2.8, 3.2, 5.2) at t = 0.
In all cases the approach velocity has a maximum value at a certain time and then
decreases. The slow down is due to activation of lubrication force at close approach.
The approach velocity in the case of the smallest initial distance d/R = 2.8 shown in
figure 24(a) is negative for a short period and the particles first disperse and then
attract.

The same type of plots are presented in figure 25 for the case in which the viscosity
of the lower fluid is reduced tenfold, from 0.1 to 0.01 P and d/R = 6, larger even
than d/R =5.2 in figure 24(c). The magnitudes of the velocities which develop are
larger in the small-viscosity fluid even though the initial separation is larger. The
approach velocity is not monotonic due to changes in the interface shape away from
the disk.
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Figure 23. The positions of two disks suspended on the two-fluid interface and the velocity
distribution at the domain midsection are shown at t =0.04, 0.2, 0.5 and 0.8 s (a–d). The length
of velocity vectors is magnified 100 times and shown at every other node. The disks move
toward each other in the interface. The surface tension is 3.0 dyn cm−1, the particle density
is 1.1 g cm−3 and the density of the top fluid is 0.1 g cm−3 and that of the bottom fluid is
1.0 g cm−3. The initial distance between the disks is 3.2R. The dimensionless parameters based
on the maximum velocity of the disk are (Re= 0.0023,G =242.0,Ca = 1.5) and based on the
capillary velocity are (Re=1.5 × 10−3,G = 545.0).



Fluid dynamics of floating particles 69

–0.2

0

0.2

0.4

0.6

0.05 0.10 0.15

u 2
 –

 u
1

u 2
 –

 u
1

u 2
 –

 u
1

2.0

2.5

3.0 (a)

(b)

(c)

0 0.05 0.10 0.15

d–
R

d–
R

d–
R

2.0

2.5

3.0

3.5

0 0.2 0.4 0.6 0.8

0.05

0.10

0 0.2 0.4 0.6 0.8

2

4

6

0 0.2 0.4 0.6 0.8

0.4

0.2

0 0.2 0.4 0.6 0.8
tt

Figure 24. The approach velocity u2 − u1 and the dimensionless distance d/R between the
disks are plotted as functions of time. The approach velocity initially increases as the interface
height between the disks decreases and then decreases as the gap between the particles becomes
small. (a) The initial distance between the disks is 2.8R and the dimensionless parameters
based on the maximum disk velocity are (Re= 0.11,G=2224.5,Ca = 0.0021). (b) The initial
d/R = 3.2 and the dimensionless parameters are (Re = 0.0023,G =242.0,Ca = 1.5). (c) The
initial d/R = 5.2 and the dimensionless parameters are (Re = 0.11,G=2224.5,Ca = 0.0021).

The tendency toward initial repulsion followed by attraction seen in figure 25 when
the initial separation d/R = 6 is small has been observed in experiments. Joseph et al.
(2003), state (p. 143)

“We create such dispersions by pouring particles on the liquid, nothing complicated, just like

a salt shaker. As soon as the particles hit the liquid surface they disperse radially leading to

dispersions like that 3 minutes in figure 4. The dispersion, followed by attraction, is more or less

universal and we have not seen it mentioned in the literature.”

We expect the limiting value d/R = 2 to be achieved asymptotically as t → ∞; this
asymptotic result cannot be achieved with the present numerical package which uses
a security zone to prevent collisions of particles. In the future we will implement the
new scheme of Singh, Hesla & Joseph (2003) which does allow collision and close
packing in equilibrium.
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Figure 25. The approach velocity u2 − u1 and the dimensionless distance d/R between the
disks are plotted as functions of time. The approach velocity initially increases as the interface
height between the disks decreases and then decreases as the gap between the particles becomes
small. The lower fluid viscosity is 0.01 P and the initial d/R = 6. The dimensionless parameters
based on the maximum disk velocity are (Re= 2.4,G = 425.8,Ca= 0.0024).

ρp ρ (upper fluid) η (upper fluid) γ (u2 − u1)max

1.1 1 0.1 10 0.0036
1.5 1 0.1 10 0.0762
1.5 0.1 0.01 10 0.034
2.0 0.1 0.01 10 0.066

Table 6. The maximum approach velocity for the disks is listed to show the dependence on
their density. The lower fluid viscosity is 0.1 P and the density is 1.0 g cm−3. The initial distance
between the disks is 2.8R.

Since the computational domain size for our simulations is only 8R, the interface
evolution near the particles is also influenced by the conditions imposed at the domain
boundary. On the domain walls, the contact line does not remain flat; its level is
lower in the middle of the domain walls and higher in the domain corners. This
causes the particles’ approach velocity to vary, as the lowering of contact lines on the
domain walls influences the magnitude of the lateral attractive force, especially when
the gap between the disk and a domain wall is comparable to the distance between
the disks. This effect, which is due to a finite size of the computational domain, can
be diminished by performing simulations in larger domains.

An interesting consequence of the lowering of the interface height between the
disks is that the average value of the contact angle around the disk decreases. This
decrease reduces the vertical component of capillary force which acts against gravity
and keeps the disks floating. A reduction in the vertical capillary force causes the disks
to sink slightly, increasing the contact angle everywhere except between the disks.
After this additional sinking, the buoyant weight again becomes equal to the vertical
component of the capillary force. This additional sinking, which also happens when
two floating spheres come near each other, suggests that the clusters of disks are
more likely to sink than an isolated disk.

Role of the particle density

In table 6 we have given results for the approach velocity for different values of the
particle density. A denser disk sinks more causing a greater interfacial deformation.
The lateral force which arises from the asymmetry is then greater and the velocity
with which the disks approach each other is larger.
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ρlower ρ (upper fluid) η (upper fluid) γ (u2 − u1)max

1.0 1 0.1 10 0.0762
1.0 0.1 0.1 10 0.039

Table 7. The maximum approach velocities for the disks are listed to show dependence on the
upper fluid density. The lower fluid viscosity is 0.1 Poise and the particle density is 1.5 g cm−3.
The initial distance between the disks is 2.8R.

ρlower ρ (upper fluid) η (upper fluid) γ (u2 − u1)max

1.0 0.01 0.01 10 0.291
1.0 0.01 0.005 10 0.297

Table 8. The maximum approach velocities for the disks are listed to show the dependence
on the upper fluid viscosity. The lower fluid viscosity is 0.1 P and the particle density is
2.0 gm cm−3. The initial distance between the disks is 2.8R.

Role of the fluid density ratio

We now show how u2 − u1 depends on lU = ρU/ρL. The case of matched densities
ρU = ρL is interesting because the lowering of the interface does not cause an increase
in Fp . This case is also interesting because after the motion stops an equilibrium is
reached in which the variation of pressure does not depend on the interface shape.
This implies that the interface must deform so that there is no pressure jump across
it; hence the mean curvature of the deformed interface is zero.

When the density ratio lU is decreased the disks sink to a lower depth and their
lateral approach velocities are smaller. The maximum approach velocities for two
cases are listed in table 7.

Role of the viscosity ratio

We know that the viscosity does not play a role in determining the equilibrium
state of floating particles, but it does alter the velocity. The lateral velocity of the disk
decreases with increasing viscosity, but is not so strongly dependent on the viscosity
ratio m = ηU/ηL.

In table 8 we have shown results for two different values of ηU/ηL. All other
parameters are kept fixed. The approach velocity increases, but only slightly as the
viscosity ratio is decreased. These velocities at a fixed distance of 2.7R are for the
disks released at the initial distance of 2.8R. The velocity increase is due to a decrease
in the viscous resistance of the upper fluid. The increase in the velocity is greater for
the heavier particles and also for larger values of lU ; in these cases the interfacial
deformation is greater.

7. Conclusions
This paper is the first to be published on the direct numerical simulation of the

motion of solid floating particles. A floating smooth particle, embedded in the interface
between two fluids, touches the interface at a fixed contact angle, which at equilibrium
is given by the Young–Dupré law. For a floating prismatic particle, on the other hand,
the contact line is assumed to be fixed at its sharp edge, provided the contact angle
at the edge is within the limits specified by the Gibbs extension to the Young–Dupré
law. For example, in our simulations of disks, floating with their axis normal to the
interface, the contact line is assumed to be pinned at the top sharp edge of the disk.
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The constraint that the contact line remains pinned at a sharp edge of a prismatic
particle is different from that for a smooth particle, such as a sphere. For a smooth
particle, the contact line can move, but the contact angle is fixed and here is assumed
to be that at equilibrium given by the Young–Dupré law. The problem of the motion
of the contact line is difficult and unsolved. The difficulty is that the no-slip condition
implies that the contact point cannot move which contradicts the behaviour seen in
experiments (see Dussan V. & Davis 1974; Dussan V. 1976; Kistler & Scriven 1993
and references therein). Several approaches to this problem have been proposed and
could be implemented in direct numerical simulations (see Sussman 2001; Friedrichs &
Guceri 1993; Kamal et al. 1988, and references therein). Here we look at one approach
which could be called capillary-induced motion of the contact line due to a prescribed
contact angle. In this approach, we let the contact line adjust to the dynamics under
the constraint that the contact angle is fixed. The no-slip condition is satisfied before
and after the contact line moves. In another approach, not implemented here, the
contact line is allowed to slip by relaxing the no-slip condition by making the velocity
of the contact line proportional to the shear stress there. This approach requires us to
relax the prescribed contact angle condition. Another feature, not treated here, which
has an impact on the floating particle problem is the existence of advancing and
receding contact angles. The subject is very rich with many possibilities that might be
studied in direct simulations.

The Marchuk–Yenenko operator-splitting technique is used to decouple the four
primary numerical difficulties of the governing equations: incompressibility constraint,
nonlinear convection term, Lagrange multiplier problem that forces rigid-body motion
within the particles, and the interface advection problem. The resulting four sub-
problems are solved efficiently using matrix-free approaches. Specifically, the DLM
approach is used for enforcing rigid-body motion inside the particles, the level-set
approach for tracking the interface and the conjugate gradient algorithms are used
to enforce the incompressibility constraint and to solve the nonlinear convection
problem. The contact line is kept at a sharp edge by making the level-set function
zero along the edge. On smooth surfaces the contact angle is kept fixed by using the
technique described above. The code is validated by simulating the time-dependent
motion of a particle released on a two-fluid interface to steady state.

Our simulations show that the interface shape near a sphere adjusts quickly after
it is released to meet the contact angle requirement, but away from the sphere the
interface shape takes a much longer time interval to adjust during which the vertical
position of the particle changes. The computed results are shown to be independent
of the mesh resolution as well as of the size of time step. The steady-state limits
of our dynamic simulations agree with the equilibrium results. The time-dependent
simulations of two or more floating particles lead to capillary attraction and the
formation of clusters. The attractive capillary force arises due to the asymmetric
interface deformation around the particles. Specifically, the interface height between
the particles is lowered giving rise to a lateral attractive force due to capillarity. This
lowering of the interface also decreases the net vertical component of the capillary
force which causes the floating height of the particles to decrease. These results agree
qualitatively with the experimental data as well as the equilibrium analysis.

For floating disks, simulations are started by assuming that the interface is flat
and that the top surface of the disk is in the plane of the interface, ensuring that
the contact line is initially pinned at the sharp rim. The disk assumed to be denser
than the liquid sinks into the lower liquid. As it sinks, the contact angle increases
which in turn increases the vertical component of the capillary force. The disk stops
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sinking when its buoyant weight is balanced by the capillary force. The code is
validated by simulating the time-dependent motion of a disk released on a two-fluid
interface to steady state. Simulations show that as the disk sinks, the interface near
the disk moves downward, as the contact line is pinned to the edge, but away from
the disk the interface shape takes a longer time interval to adjust during which the
vertical position of the disk changes. The computed results are independent of the
mesh resolution as well as of the size of the time step. The steady-state limits of our
dynamic simulations agree with the equilibrium results.

Simulations also show that the lowering of the interface between disks pinned to
the interface at the rim reduces the contact angle between the disks giving rise to
an unbalanced attractive capillary force. Two floating spheres also attract, but the
mechanism by which the attractive force arises is different. Specifically, the lateral
force on two floating spheres arises due to the lowering of the contact line on the
surfaces between the two spheres which is a consequence of the constraint that the
contact angle is fixed. For floating disks, on the other hand, the contact line is fixed
and the lateral force arises due to a decrease in the contact angle between the disks
due to the lowering of the interface. The lowering of the interface also decreases the
net vertical component of the capillary force which causes the floating height of the
particles to decrease.

Though our floating particle code has been optimized in various ways it still
runs slowly. Improvements can be made by parallelizing the code for machines with
large clusters. The security zone which has been used in previous direct numerical
simulation based studies, and this one, does not allow contact between particles
and hence is not faithful to the crystal structures which can evolve in problems of
self-assembly due to capillary attraction. Fortunately, the new collision scheme put
forward by Singh et al. (2003) does allow particle–particle contact and close packing.
We will implement this new strategy in our future work.

This paper is dedicated to Professor Stan Osher on the occasion of his 60th birthday.
This work was partially supported by National Science Foundation KDI Grand
Challenge grant (NSF/CTS-98-73236) and a GOALI grant NSF/CTS-0109079,
Engineering Research Program of the Office of Basic Energy Science at DOE, a grant
from Schlumberger foundation, from STIM-LAB Inc., New Jersey Commission on
Science and Technology through the New-Jersey Centre for Micro-Flow Control under
(Award Number 01-2042-007-25) and the University of Minnesota Supercomputing
Institute.

Appendix. Weak form of equations and finite-element discretization
The approach used for obtaining the weak form of the governing equations for

the fluid–particle systems was described in Glowinski et al. (1999) and Singh et al.
(2000). In obtaining this weak form, the hydrodynamic forces and torques acting
on the particles can be completely eliminated by combining the fluid and particle
equations of motion into a single weak equation of motion for the combined fluid–
particle system. The hydrodynamic stresses acting at the interface are also completely
eliminated. For simplicity, in this section we will assume that there is only one particle.
The extension to the many-particle case is straightforward.

The solution and variation are required to satisfy the strong form of the constraint of
rigid-body motion throughout P (t). In the distributed Lagrange multiplier method this
constraint is removed from the velocity space and enforced weakly as a side constraint
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using a distributed Lagrange multiplier term. The following weak formulation of the
problem holds in the extended domain:

For a.e. t > 0, find u ∈ WuΓ , p ∈ L2
0(Ω), λ ∈ Λ(t), U ∈ R3, ω ∈ R3 and φ ∈ Wφ , satisfying∫

Ω

ρ

(
du
dt

− g
)

· v dx −
∫

Ω

p∇ · v dx +

∫
Ω

2ηD[u]: D[v] dx

+

(
1 − ρ

ρd

)(
M

(
dU
dt

− g
)

· V + I
dω

dt
ξ

)
− F′ · V −

∫
Ω

γ κδ(φ) n · v dx

= 〈λ, v − (V + ξ × r)〉P (t) for all v ∈ W 0, V ∈ R3, and ξ ∈ R3, (A 1)∫
Ω

q∇ · u dx = 0 for all q ∈ L2(Ω), (A 2)

〈µ, u −(U + ω × r)〉P (t) = 0 for all µ ∈ Λ(t), (A 3)

u|t=0 = uo in Ω, (A 4)∫
Ω

(
∂φ

∂t
+ u · ∇φ

)
g dx = 0 for all g ∈ Wφ0, (A 5)

φ|t=0 = φ0 in Ω,

as well as the kinematic equations and the initial conditions for the particle linear
and angular velocities. Here F′ is the additional body force applied to the particles
to limit the extent of overlap (see equation (19) in Glowinski et al. 1999), λ is the
distributed Lagrange multiplier,

WuΓ = {v ∈ H 1(Ω)3|v = uΓ (t) on Γ },
W 0 = H 1

0 (Ω)3,

L2
0(Ω) = { q ∈ L2(Ω)|

∫
Ω

q dx = 0},
Wφ = {φ ∈ H 1(Ω)|φ = φ0(t) on Γ −},
Wφ0 = {φ ∈ H 1(Ω)|φ = 0 on Γ −},




(A 6)

where Γ − is the upstream part of Γ and Λ(t) is L2(P (t))3, with 〈. , .〉P (t) denoting the
L2 inner product over the particle. In our simulations, since the velocity and µ are in
L2, we will use the following inner product:

〈µ, v〉P (t) =

∫
P (t)

(µ · v) dx. (A 7)

In order to solve the above problem numerically, we will discretize the domain
using a regular tetrahedral mesh Th for the velocity, where h is the mesh size, and a
regular tetrahedral mesh T2h for the pressure. The following finite dimensional spaces
are defined for approximating WuΓ , W 0, L

2(Ω), L2
0(Ω), Wφ and Wφ0:

WuΓ,h = {vh ∈ C0(Ω)3|vh|T ∈ P1 × P1 × P1 for all T ∈ Th, vh = uΓ,h on Γ },
W0,h = {vh ∈ C0(Ω)3|vh|T ∈ P1 × P1 × P1 for all T ∈ Th, vh = 0 on Γ },
L2

h = {qh ∈ C0(Ω)|qh|T ∈ P1 for all T ∈ T2h},
L2

0,h =
{
qh ∈ L2

h|
∫

Ω
qh dx = 0

}
,

Wφ,h = {gh ∈ H 1(Ω)|gh|T ∈ P1 for all T ∈ Th, gh = φn on Γ −}
Wφ0,h = {gh ∈ H 1(Ω)|gh|T ∈ P1 for all T ∈ Th, gh = 0 on Γ −}
WφR,h = {gh ∈ H 1(Ω)|gh|T ∈ P1 for all T ∈ Th, gh = 0 on the interface}.




(A 8)



Fluid dynamics of floating particles 75

The particle inner product terms in (A 1) and (A 3) are obtained using the discrete
L2 inner product defined in Glowinski et al. (1999). Specifically, we choose M points,
x1, . . . , xM that uniformly cover P (t), and define

Λh(t) =

{
µh|µ =

M∑
i=1

µh,iδ(x − xi), µh,1, . . . , µh,M ∈ R3

}
.

Using these finite dimensional spaces, it is straightforward to discretize equations
(A 1) – (A 5). Notice that the discrete space Wφ,h assumes that φ is known on the
upstream portion of the boundary. This is not a problem even when φ(t) is not
known on the upstream boundary in advance because the imposed boundary value
can be corrected during the reinitialization step. Since only the zero level set of φ(t) is
physically relevant, we have a lot of freedom in treating φ(t) away from the interface.
In our code, the value from the previous time step is used as the boundary value. The
reinitialization space WφR,h assumes that φ remains zero along the interface which is
done by imposing the Dirichlet boundary condition, φ = 0, along the interface during
reinitialization iterations.

A.1. Strong form

The strong form for the weak formulation can be obtained by integrating the stress
term by parts. The resulting equations inside the region occupied by the fluid Ω\P (t)
are

ρ

[
∂u
∂t

+ u · ∇u
]

= ρg − ∇p + ∇ · σ + γ κδ(φ)n in Ω\P(t),

∇ · u = 0 in Ω\P(t),

u = uL on Γd,

u = U + ω × r on ∂P (t),

and the equations inside the region occupied by the particles P (t) are

ρ

[
∂u
∂t

+ u · ∇u
]

= ρg − ∇p + ∇ · (2ηD) + λ − R2∇2λ, (A 9)

u = U i + ωi × r i on ∂Pi(t), i = 1, . . . , N.

Here we have used the fact that the rigid-body motion satisfies the incompressibility
constraint and that D(u) inside the particles is zero. The boundary condition for λ
on the interface between the fluid and particle regions ∂P (t) is

n · (−σL) = n · ∇λ (A 10)

where n is the normal at the fluid–particle interface, and σL = −pI+2ηD is the stress
in the fluid phase, and σP = 0 is the stress inside the particles. For given U(t) and
ω(t), and the positions Xi(t), i = 1, . . . , N , equation (A 9) can be written as

λ − R2∇2λ = ρL

(
dU
dt

+
dω

dt
× r + ω × (ω × r) − g

)
(A 11)

It is shown in Joseph (2002, chapter IV), that it is possible to completely eliminate
the Lagrange multiplier λ from the strong form.

A.2. Time discretization using the Marchuk–Yanenko operator splitting scheme

The discretized initial value problem (A 1–A 5) is solved by using the Marchuk–
Yanenko operator splitting scheme. This allows us to decouple its four primary
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difficulties:
1. the incompressibility condition and the related unknown pressure ph,

2. the nonlinear convection term,
3. the rigid body motion problem inside the particles,
4. the interface problem and the related unknown level set distribution φh.
The Marchuk–Yanenko operator splitting scheme can be applied to an initial value

problem of the form

dφ

dt
+ A1(φ) + A2(φ) + A3(φ) + A4(φ) = f

where the operators A1, A2, A3, and A4 can be multiple-valued.
Let �t be the time step, and α1 and α2 be two constants: 0 � α1, α2 � 1 and

α1 +α2 = 1. We use the following version of the Marchuk–Yanenko operator splitting
to simulate the motion of particles on two-fluid interfaces:

Set u0 = u0,h, and φ0 = φ0,h.

For n = 0, 1, 2, . . . assuming un, and φn are known, find the values for n + 1 using
the following:

Step 1:

Find un+1/4 ∈ Wu,h and pn+1/4 ∈ L2
0,h, by solving

∫
Ω

ρ
un+1/4 − un

�t
· v dx −

∫
Ω

p
n+1/4∇ · v dx

=

∫
Ω

γ κδ(φ) n · v dx for all v ∈ W0,h,∫
Ω

q∇ · un+1/4 dx = 0 for all q ∈ L2
h.




(A 12)

Step 2:

Find un+2/4 ∈ Wu,h, by solving∫
Ω

ρ
un+2/4 − un+1/4

�t
· v dx +

∫
Ω

ρ
(
un+2/4 · ∇un+2/4

)
· v dx

+ α1

∫
Ω

2ηD
[
un+2/4

]
: D[v] dx = 0 for all v ∈ W0,h. (A 13)

Step 3:

Compute Un+3/4 and Xn+3/4 using the prediction procedure
Set Un,0 = Un, Xn,0 = Xn.
Do k =1, K

U∗n,k = Un,k−1 +

(
g +

(
1 − ρ

ρd

)−1

M−1F ′(Xn,k−1)

)
�t

K

X∗n,k = Xn,k−1 +

(
Un,k−1 + U∗n,k

2

)
�t

K
,
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Un,k = Un,k−1 +

(
g +

(
1 − ρ

ρd

)−1

M−1 F ′(Xn,k−1) + F ′(X∗n,k−1)

2

)
�t

K
,

Xn,k = Xn,k−1 +

(
Un,k−1 + Un,k

2

)
�t

K
,

end do

Set Un+3/4 = Un,K, Xn+3/4 = Xn,K. (A 14)

Find un+1 ∈ Wn+1
uΓ,h, λn+1 ∈ Λh((n + 2/4)�t), Un+1 ∈ R3, and ωn+1 ∈ R3, satisfying∫

Ω

ρ
un+1 − un+2/4

�t
· v dx +

(
1 − ρ

ρd

)(
M

Un+1 − Un+3/4

�t
·V + I

ωn+1 − ωn+3/4

�t
ξ

)

+ γ

∫
Ω

2ηD[un+1]: D[v] dx

=
〈
λn+1, v −

(
V + ξ × rn+3/4

)〉
P ((n+3/4)�t)

for all v ∈ W0,h, V ∈ R3, and ξ ∈ R3

〈µh, un+1 − (Un+1 + ωn+1 × r)〉P ((n+3/4)�t) = 0 for all µh ∈ Λ((n+3/4)�t), (A 15)

where the centre of particle P ((n + 3/4)�t) is at Xn+3/4. For a disk the moment of
inertia changes as the disk rotates and so we also keep track of its orientation.

Set Xn+1,0 = Xn.
Do k = 1, K

X∗n+1,k = Xn+1,k−1 +

(
Un + Un+1

2

)
�t

K
,

Xn,k = X∗n,k−1 +

(
1 − ρ

ρd

)−1

M−1

(
F ′(Xn+1,k−1) + F ′(X∗n+1,k)

2

)
(�t)2

2K
,

end do
Set Xn+1 = Xn+1,K .

Step 4:

Find φn+4/4 ∈ Wn
φ,h, by solving∫

Ω

(
φn+4/4 − φn

�t
+ un+1 · ∇φn+1

)
gh dx = 0 for all gh ∈ Wφ0,h. (A 16)

Set pn+1 = pn+1/4, φn+1 =φn+4/4.

Step 4.1:

Reinitialize φn+1

Set φ0
R = φn+1

For r = 0, 1, 2, . . .

wr = S(φn+1)
∇φr

R∣∣∇φr
R

∣∣
Find φr+1

R ∈ WφR,h, by solving∫
Ω

(
φr+1

R − φr
R

�t
+ wr · ∇φr

R

)
gh dx =

∫
Ω

S(φn+1)gh dx for all gh ∈ WφR,h. (A 17)

Go back to the above for loop.
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Step 4.2:

Modify φn+1 inside and on the particle surfaces to enforce contact angle

Set φ0
R = φn+1

For r = 0, 1, 2, . . .

ur
ex =

{
0 outside particles

uex from (5.6) otherwise.

Find φr+1
R ∈ WφR,h, by solving∫

Ω

(
φr+1

R − φr
R

�t
+ ur

ex · ∇φr
R

)
gh dx = 0 for all gh ∈ WφR,h. (A 18)

Go back to the above for loop.
Set φn+1 = φr+1

R and go back to the first step.

The decoupled sub-problems can be solved much more efficiently than the original
problem (A 1–A 5). In our code all of these sub-problems are solved using matrix-free
algorithms, which reduces the memory required.

Remarks:

1. The first step gives rise to a L2 projection problem for the velocity and pressure
distributions which is solved by using a conjugate gradient method (Glowinski et al.
1992, 1999).

2. The second step is a nonlinear problem for the velocity, which is solved by using
a least square conjugate gradient algorithm (Glowinski & Pironneau 1992).

3. In this paper, we will assume that α1 = 1, α2 = 0.
4. The fourth step is a hyperbolic problem for the scalar level-set function φ. This

problem is solved by using an upwinding scheme where the advection term is discret-
ized using a third-order scheme (Glowinski & Pironneau 1992 and Pillapakkam &
Singh 2001).

5. After advecting φ according to (A 16), we reinitialize φ to be a distance function
near the interface by performing one or two iterations of (A 17) using a fast algorithm
developed in Pillaipakkam & Singh (2001). The interface position φ(t) = 0 does not
change during these reinitialization iterations. It is necessary to re-initialize φ to
ensure that the scheme accurately conserves mass.

6. The level-set function is extended inside and on the surface of the particles such
that the contact angle is 135◦ by performing one or two iterations of (A 18).
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